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Abstract: Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is
deciphered. Cells utilize these modifications not only to maintain physiological processes, but also
to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are
targeted, and result in modifications including methylation and deamination. Such modified residues
as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular
diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and
Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their
nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD
are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I
modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial
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infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary
artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement
due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography.
The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by
quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate
protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN
study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and
potential drug targets.

Keywords: biomarkers; epitranscriptomics; ischemic heart disease; N6-methyladenosine; m6A;
adenosine-to-inosine; A-to-I; RNA modifications

1. Introduction
1.1. Ischemic Heart Disease

With 8.9 million yearly deaths worldwide, ischemic heart disease (IHD) is the leading
cause of mortality [1]. It develops due to atherosclerosis, a process involving lipid and
immune-cell buildup into coronary arteries forming calcified deposits, which eventually
restrict blood flow to the myocardium [2]. These deposits have a tendency to rupture and
occlude blood flow, thus causing myocardial infarctions (MIs). While timely revascular-
ization can alleviate the damage to the myocardium relying on blood supply from the
occluded artery, often the dead and injured tissue is replaced by a scar. With the heart
devoid of any major regenerative ability, the processes of fibrosis and progressive stiffening
often gain dominance and deplete the myocardium’s functional reserve [3]. Initially, the
compensatory remodeling mechanisms, including cardiac myocyte hypertrophy, in other
areas, can make up for the lost function. However, their extensive activation ultimately
leads to structural and functional defects, collectively called maladaptive hypertrophy,
compromising the heart’s filling and pumping ability. The resulting heart failure (HF) is a
syndrome associated with high morbidity and mortality [4,5]. Disturbingly, IHD can exist
asymptomatically without any signs of its existence, only to manifest as a sudden death [6].
Hence, the need for biomarkers capable of exposing IHD is apparent.

The quest for IHD biomarkers has yielded multiple candidates including systemic
markers of inflammation and altered metabolism [7–12]. However, widespread use of these
biomarkers is either limited or preliminary [13,14]. Currently, the diagnostic guidelines
focus on the evaluation of symptoms, especially exertional chest pain (Angina pectoris)
and dyspnea, determination of risk factors, such as age, sex, smoking, dyslipidemias,
hypertension, diabetes, and family history of cardiovascular disease and risk factors-based
calculators, such as Systematic Coronary Risk Estimation (SCORE) [15–17].

The current risk factors and validated risk calculators provide epidemiology-based
estimations for the long-term emergence of “hard” IHD-related outcomes (e.g., fatal IHD,
MI, stroke), which vary both in time and across cultures [18]. Direct assessment of a disease-
associated or disease mechanism-coupled circulating biomarker could promote better-
timed, targeted, and more personalized secondary prevention. Moreover, a biomarker
capable of mirroring disease progression and regression would be invaluable for the
evaluation of therapy efficacy. At best, it could even detect disease in asymptomatic
individuals considered at risk of IHD with identical risk factor profiles.

1.2. Epitranscriptomics

On a molecular level, the bases of a newly transcribed RNA strand undergo exten-
sive modifications both in the nucleus and cytoplasm. These epitranscriptomic RNA
modifications have been identified as regulators of, for example, RNA splicing, silencing,
localization, and stability that mediate or regulate a variety of processes involved in tissue
homeostasis and disease [19]. In adenosine, the NH2-group at the purine ring’s sixth posi-
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tion may undergo enzymatic deamination to yield inosine (A-to-I) or methylation resulting
in formation of N6-methyladenosine (m6A). Currently, these A-to-I and m6A modifications
stand out as the most studied and abundant epitranscriptomic alterations, the extent and
effects of which are governed by a variety of proteins (Figure 1) [20–25]. However, many
other less charted and abundant such modifications have also been identified, includ-
ing N1-methyladenosine (m1A), N5-methylcytosine (m5C), N7-methylguanosine (m7G),
N6,2′-O-dimethyladenosine (m6Am), and pseudouridine (Ψ) [20].
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Figure 1. Overview of the RNA m6A modification and A-to-I RNA editing and their known writers, readers, and erasers.
m6A modification and A-to-I editing occur in most RNA species. ADAD1-2, adenosine deaminase domain-containing
protein 1-2; ADAR1-3, double-stranded RNA-specific adenosine deaminase 1-3; ADAT1-3, adenosine deaminases acting on
tRNAs; ALKBH5, alkB homolog 5 RNA demethylase; A-to-I, adenosine-to-inosine RNA editing; circRNA, circular RNA;
ENDOV, human endonuclease V; eIF3, eukaryotic initiation factor 3; EWSR1, Ewing sarcoma breakpoint region 1 protein;
FMRP, fragile X retardation protein; FTO, fat mass and obesity associated protein; G3BP1, Ras GTPase-activating protein-
binding protein 1; HAKAI, E3 ubiquitin-protein ligase Hakai; HNRNP-A2B1,-C,-G, heterogeneous nuclear ribonucleoprotein
A2/B1 and C1/C2 and G; HuR, human antigen R; IGF2BP1-3; The insulin-like growth factor-2 mRNA-binding proteins 1,
2, and 3; LIN28A, Lin-28 homolog A; lncRNA, long non-coding RNA; METTL3,-14,-16, N6- adenosine-methyltransferase
catalytic subunit/non-catalytic subunit/METTL16; METTL5, methyltransferase Like 5; mRNA, messenger RNA; miRNA,
microRNA; Prcc2a, proline rich coiled-coil 2 A; RBM15, RNA binding motif protein 15; rRNA, ribosomal RNA; snoRNA,
small nucleolar RNA; TRMT112, TRNA methyltransferase subunit 11-2; tRNA, transfer RNA; VIRMA, vir like m6A
methyltransferase associated; WTAP, Wilm’s tumor associated protein; (YTH)DC1-2, YTH domain-containing protein 1 ja 2;
(YTH)DF1-3, YTH N6-methyladenosine RNA binding protein 1-3; ZCCHC4, zinc finger CCHC-type containing 4; ZC3H13,
zinc finger CCCH domain-containing protein 13; *, miRNAs can also derive from pre-mRNA introns.

Silencing or overexpression of enzymes controlling m6A abundance has revealed the
role of m6A in driving immune reactivity, proliferation, apoptosis, and many intracellular
processes including mRNA splicing, translation, and degradation [20,26], as well as miRNA
biogenesis [27]. Moreover, reports from diverse fields of research [28–31], and in an
array of cardiovascular pathologies [32–48], provide evidence of m6A as a master post-
transcriptional regulator.

Since inosines pair with cytosines instead of uracils, the A-to-I modification is capable
of diversifying the transcriptome [22]. Like m6A, A-to-I editing contributes to RNA stability
and innate immunity, but also regulates RNA splicing as well as miRNA biogenesis and
function [22,49,50]. Changes in the RNA A-to-I modification landscape have been associ-
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ated with pathologies including cancer, neurological impairment [49], and cardiovascular
disease [25,51–56].

1.3. Rationale and Goals

The hypothesis of the Ischemic Heart Disease Epitranscriptomics and Biomarkers
(IHD-EPITRAN) study states that specific features of IHD are mirrored as epitranscriptomic
modifications in the circulating blood RNAs. For example, these changes can manifest
as alterations of m6A and A-to-I abundance or changes in their decoration patterns or
loci within an RNA transcript (Figure 2). Such rationale is suggested by associations
between the cellular and molecular processes governed by these modifications and the
pathophysiology of IHD. Firstly, formation and dynamics of atherosclerotic plaques could
contribute with epitranscriptomic signals into blood since they are the pathophysiological
“hotspots” of IHD. They have characteristic features including active inflammatory cell
proliferation, altered cellular and paracrine signaling microenvironments, and changes in
the luminal presentation of blood cell response-modifying structures [57–61]. Secondly,
the myocardium suffering from and responding to varying degrees of ischemia can either
directly through e.g., shedding or production of RNA-packed extracellular vesicles (EVs),
or priming and altering the patrolling blood cells’ responses contribute to epitranscriptomic
cellular or cell-free RNA signature changes in blood. Thirdly, IHD promoting systemic
responses, of which for example efflorescence of clonal hematopoiesis (CH) in bone mar-
row [62–66] and splenic hematopoiesis seeding proinflammatory monocytes [63,67,68] can
be expected to alter blood epitranscriptomic signatures. Mechanistically, these postulations
are suggested from notions that: (1) some leukocytes (1a) do exit the plaques [69], and
(1b) oscillate between circulation and ischemic myocardium [70,71], (2) monocytosis has
been independently associated with stable IHD and MI [72,73], (3) m6A has been shown
to partake in dendritic cell (specialized monocytes) activation [74], (4) METTL3-mediated
m6A-hypermethylation seems to act as a downstream elicitor of atherogenesis in vascular
endothelium in response to disturbed flow and oscillatory shear stress [75], (5) the plaques,
juxtaposed platelets, and ischemic myocardium are known to shed EVs to circulation
encasing unique miRNAs [59,76–81], (6) miRNAs in such EVs have recently been shown
to be epitranscriptomically modified [82], (7) epitranscriptomic and epigenetic regulators
(7a) are often noted as CH driver mutations [83], and (7b) are pivotal for proliferation of
hematopoietic stem cells (HSCs) [31,84–88]. Based on this rationale, the IHD-EPITRAN
study aims to identify novel epitranscriptomic biomarkers and drug therapy targets for
IHD from blood (Table 1).

Table 1. Main goals of the IHD-EPITRAN study with brief respective descriptions. IHD, Ischemic heart disease.

Goal Description

To identify IHD-specific candidate biomarkers and lay the
foundation for both clinical and diagnostic efficacy studies in
the future

Corss-sectional cohort study design
Comparsion of blood RNA modifications of IHD cohorts to
non-IHD cohorts
Porspective cohort study design
Comparsion of circulating RNA modifications of IHD-positive
cohorts to thoes in IHD-negative cohort

To establish protocals and modify detection methods and
workflows for RNA modications

Optimization of RNA isolation, type-fragmentation for
modification-targeted RNA sequencing using both second and
third generation methodologies

To increase the pathophysiologic knowledge of IHD
The cross-sectional and prospective comparsions of blood and
right atrial appendage epitramscriptomes is expectable to
provide novel insight to the IHD pathophysiology

To open venues for therapeutic development previously been
disregarded due to the lack of research and
methodological limitations

Identification of novel epotanscriptomic candidate blood
biomarkers for IHD can provide potenial targets also for future
drug development
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Figure 2. IHD-EPITRAN hypotheses (A). Coronary plaques signal bone marrow residing HSCs to increase proliferation
promoting the efflorescence of CH and extramedullary hematopoiesis (Ly-6Chigh monocytosis), which both seed epitran-
scriptomically distinct cells to the circulation. (B). Leukocytes and platelets patrolling in the proximity and inside the
atherosclerotic plaques, ischemic myocardium, and stressed endothelium oscillate back and seed EVs to the circulation with
detectable alterations in their m6A and A-to-I RNA signatures. (C). The ischemic myocardium prime patrolling leukocytes
and secrete paracrine EVs encasing m6A and A-to-I modified RNA molecules, entering also to the circulation. A-to-I,
adenosine-to-inosine; CH, clonal hematopoiesis; EV, extracellular vesicle; HSC, hematopoietic stem cell; Ly6C, lymphocyte
antigen 6; m6A, N6-methyladenosine; RBCs, red blood cells; TCs, thrombocytes; WBCs, white blood cells.

2. Materials and Methods
2.1. Overview

The IHD-EPITRAN study recruits patients with both acute and chronic manifestations
of IHD, non-IHD cardiac valve pathology, and healthy controls without IHD. The ethics
review board at Helsinki University Hospital (HUS) approved the study protocol (Dnr.
HUS/1211/2020). The study is registered at ClinicalTrials.gov (NCT04533282). Written
informed consent is acquired from all patients before recruitment. Patient recruitment and
follow-up began in November 2020. At the time of submission of this manuscript, the study
had enrolled 40 patients. The results are expected to be published between 2022–2026. The
study will be conducted following the Declaration of Helsinki on Ethical Principles for
Medical Research Involving Human Subjects [89].
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2.2. Study Groups, Recruitment and Exclusion Criteria

The IHD-EPITRAN study will recruit 50 patients in each of the four study groups to
reach its first subgoal of a total of 200 patients. However, the study is expected to continue
after the completion of this first phase to increase cohort sizes and study power over time
(www.ihd-epitran.com, accessed on 24 May 2021).

The first study cohort (I) consists of patients admitted to the cardiac care unit (CCU)
and recruited within 72 h of revascularization via percutaneous coronary intervention
(PCI) for MI with ST-elevations (STEMI). The second study cohort (II) consists of patients
with chronic coronary syndrome (CCS, typically of category 1: suspected chronic IHD due
to anginal symptoms [12]). These are patients with persistent IHD symptoms scheduled
to undergo elective coronary artery bypass grafting (CABG) operations. The third study
cohort (III) consists of non-IHD patients undergoing aortic valve replacement surgery (AVR)
for aortic valve stenosis (AVS). The fourth study cohort (IV) consists of patients diagnosed
as negative for IHD with coronary artery computerized tomography angiography (CCTA)
imaging. The former two cohorts (I-II) represent patients with IHD while the latter two
cohorts (III and IV) represent non-IHD control patients. A chronologic and cross-sectional
summary of the study cohorts is provided in Figure 3.
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While patients in cohort I will be recruited during the hospitalization period, the
cohorts II and III will be recruited during the preoperative visit. Patients in cohort IV will
be either (1) preselected based on received referrals by the outpatient-treating physicians to
CCTA imaging or (2) contacted after CCTA imaging if it has been negative for IHD within
the last 3 months and exclusion criteria are met (Table 2).

All recruited patients will be invited for an echocardiography visit (Section 2.3.4). The
study information sheets will be sent well beforehand to ensure familiarization of the study
for the candidate participants when possible (cohorts II and IV) and delivered as soon as
practical according to the clinical situation in CCU for patients in cohort I. Patients aged
18–80 years and meeting the cohort-specific descriptions are eligible for participation in the
study. The exclusion criteria and their rationales are presented in detail in Table 2.

www.ihd-epitran.com
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Table 2. General and cohort-specific exclusion criteria for the IHD-EPITRAN study. CCS, Canadian cardiovascular society
(for angina pectoris grading); GFReEPI, Glomerular filtration rate estimated with CKD-EPI (Chronic Kidney Disease
Epidemiology Collaboration) equation; IHD, ischemic heart disease; LVEF, left ventricular ejection fraction; LVH, left
ventricular hypertrophy; NYHA, New York Heart Association (for heart failure grading); PCI, percutaneous coronary
intervention; RR, Scipione Riva-Rocci (eponym for sphygmomanometric blood pressure gauge).

General Justification

Condition that limits life expectancy May modify blood epitranscriptomes hampering reliable
biomarker identification

Active inflammatory state (i.e., gout, systemic
lupus erythematosus)

Cimplement, cytokines and leukocyte activation may infuence
blood epitranscriptomes

Primary desease of blood or bone marrow Expectable to alter epotranscriptomic regulation precluding
reliable biomarker discovery

Major congenital heart disease of atrial fibrillation To exclude the effects of remodelling in atrial appendges

Renal insufficiency (GTReEPI < 45 mL/min) To exclude the effects of altered blood solute dynamics for
reliable biomarker discovery

Uncontrolled hypertension (RR > 180/100 mmHg) or diabetes
(HbA1c > 60 mmol/L), insulin us diabetes

Hight blood pressure and significant hyperglycemia damage
endothelium and blood cells

Prior open-heart surgery (i.e., coronary artery bypass surgery) To exclude very high-morbidity IHD and support the goal to
identify biomarkers for early-to-moderate IHD

Other manifestations of atherosclerosis:
a. Arteriosclerosis oblitierans/claudication
b. Earlier stroke, cerebral hemorrhage or transient ischemic
attach (TIA)
c. Vascular or mixed type dementia
d. Clinically releveant carotid artery stenosis
e. Mesenteric ischemia

To exclude effects of other manifestations of atherosclerosis in
blood epitranscriptomes as extensively as possible; Except for
surveying vascular claudication, prospective investigations to
exclude these manifestations will not be performed;
Ankle-brachial index is recorded for any asymptomatic
peripheral artery disease in cohort II

Transthoracic echocardiography:
a. Cardiomyopathy (Hypertrophic/Dilated)
b. Left ventricular hypertrophy (LVH)
c. Clear heart failure (i.e., LVEF < 25%)
d. Indication of atrial remodeling
e. Functionally significant valve defects

To exclude remodeling effects due to intrinsic myocardial
pathology, significant heart failure or valve defects; LVH is
considered as an exception for the cohort III
(part of pathophysiology)

Study cohort I, patients with myocardial infarction revascularized with urgent PCI

Stent thrombosis, vasospastic coronary occlusion This is IHD-focused study, myocardial infartions of other than
atherothrombotic etiology are excluded

MI complications (e.g., chordal rupture, aorthic disserction, acute
heart failure, cardiogenic shock)

To focus biomarker discovery to the IHD-induced
infarction-specific epitranscriptomic alterations

Global ischemia on electrocardiogram High rish of insufficient PCI and ischemia relievement

Study cohort II, patients with stable IHD undergoing coronary artery bypass surgery

Duration of stable angina pectoris or exertional dyspneas <
1-month, crescendo angina

To exclude acute and subacute IHD related alterations in blood
epitranscriptomes

Complex surgeries (e.g., valve/aneurysm repair) To exclude other major cardiac remodeling effects

Study cohort III, patients with stable aortic valve stenosis undergoing valve replacement surgery

Clinically mild-to-moderate stenosis with mild symptoms
(NYHA/CCA 0-I)

Indicate less pronounced pathophysiology that might be
reflected with blunted changes in the alterations of the blood
epitranscriptomes regarding AVS

Documented IHD or complex operations As a control cohort with non-IHD cardiac pathology, any
indication of IHD will lead to exclusion

Transcatheter asortic valve implantations To enable right atrial appendage sample collection

Study cohort IV, patients screened negative for IHD with coronary computed tomography

Any prior cardiovascular disease or medication currently or
in history

As critical non-IHD controls, the aim is to also recruit patients
that represent overall “cardiovascular health”
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2.3. Study Measures

The laboratory methods described below (Sections 2.3.5–2.3.10) for the study sample
analytics shape a principal protocol pipeline for the study. However, the authors reserve the
rights to alter utilized analysis methodologies to enable both smooth and most appropriate
adaptations to the evolving field of epitranscriptomics regarding its methodology as well
as pathophysiologial insight.

2.3.1. Baseline Morbidity

To manage the confounding variables, a general baseline morbidity assessment will
be performed. The assessment will be carried out using a complementary approach that
includes a patient information system search for comorbidities (e.g., hypertension, diabetes,
kidney failure, inflammatory conditions, and chronic obstructive pulmonary disease),
structured patient interview (Section 2.3.2), and a case report form (CRF) fill-out that
includes traditional Framingham cardiovascular risk factors [90], supplemented with body
mass index (BMI), personal history of MI, or family history of IHD, determination of SCORE
10-year risk estimates for fatal IHD (for the non-IHD cohorts III-IV) [17], medication list
review, coronary imaging (Section 2.3.3), myocardial imaging (Section 2.3.4), and follow-
up (Section 2.3.5). Data on patient medication will be curated and analyzed using the
InnoLIMS® Medical (Innovatics Ltd., Helsinki, Finland) or equivalent software based on
anatomical therapeutic chemical (ATC) classification using the defined daily dose (DDD)
values enabling dosage comparisons.

2.3.2. NYHA, CCS and SF-36

Angina pectoris and exertional dyspnea, the two central symptoms of IHD, will be
graded pre- and postoperatively at the three-month follow-up using the standardized
classifications systems from the Canadian Cardiovascular Society (CCS) and New York
Heart Association (NYHA) [91]. Further, the 36-Item Short Form Health Survey (SF-36) is
used to assess subjective participant morbidity [92].

2.3.3. Coronary Angiography, Computed Tomography Angiogram, SYNTAX Score

An invasive coronary angiography (ICA) will be performed for all participants in
study cohorts I–II and for most in AVR control cohort III based on clinical details (mainly
for those >50 years of age). ICA will be used to identify the precise site and quality of
coronary thrombosis and to focus the PCI revascularization on the cohort I. On the other
hand, for the cohort II, ICA will be performed to identify the main culprit segment(s) and
to guide the upcoming CABG operation. Critically, based on a clinical risk stratification,
either ICA or CCTA will be performed as a screening test to expose either obstructive or
non-obstructive IHD, respectively, prior the AVR operation in the AVS control cohort III.
All patients in the control cohort IV will undergo CCTA imaging.

While a zero Agatston coronary artery calcium score [12] from CCTA imaging will
be required for inclusion to the IHD-EPITRAN study (all in cohort IV, some in III), a
synergy between percutaneous coronary intervention (PCI) with Taxus and coronary artery
bypass surgery (CABG) (SYNTAX) will be calculated from all ICA results, providing
symptom-independent estimates of the complexity of IHD [93]. Moreover, the culprit
segment, number, and types of stents or bypasses during PCI or CABG in cohorts I and II,
respectively, will be recorded.

2.3.4. Echocardiography, 3-Month Control Visit, and Follow-Up Period

As the development of more sophisticated echocardiographic techniques has revolu-
tionized the field of cardiology and cardiac surgery by offering relevant dynamic insights
to both cardiac anatomy and function, IHD-EPITRAN will assess all participants in all
cohorts with transthoracic echocardiography (TTE). Critically, the non-IHD control patients
in cohort IV will also undergo TTE recording. In this way, valuable functional reference
values are obtained.
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The TTE recordings will be performed with prespecified acquisition methods by des-
ignated cardiologists [94]. The TTE recordings will include both anatomical and functional
assessments of atria, valves, and ventricles as well as recording the presence or absence of
pericardial effusion, thrombus, and aneurysm. Moreover, the echocardiographic raw data
will be exported and stored for further analyses, such as strain and strain rate measurements.

In addition, the 3-month follow-up visit includes a morbidity evaluation with the
use of CCS and NYHA and SF-36 questionnaires (Section 2.3.2) alongside routine clinical
anamnesis and status. Moreover, the CABG cohort II will undergo ankle-brachial indexing
(ABI) to record any asymptomatic peripheral artery disease (PAD).

A six-month prospective follow-up period starting from recruitment will be incor-
porated. Additionally, a six-month retrospective evaluation will be performed preceding
the moment of recruitment. Hospital admission rates with primary cause(s), medication
changes, determination of Major Adverse Cardiac and Cerebrovascular Events (MACCE),
and all-cause mortality for follow-up make up the parameters assessed both during retro-
spective evaluation and prospective follow-up.

Hospital admissions regarded as cardiovascular-based will be recorded using the
International Statistical Classification of Diseases and Related Health Problems (ICD-10).
The IHD-EPITRAN study will use a modified MACCE definition adopted from the ITALIC
trial [95] with a composite primary outcome including cardiovascular death, MI, acute
revascularization, stroke, transient ischemic attack (TIA), major bleeding (The Bleeding Aca-
demic Research Consortium [BARC] classes 3–5), or other hospitalization due to ischemic
cardiovascular cause [96].

All-cause mortality with the ICD-10 codes for both underlying and immediate causes
of death from the death certificates from the six-month follow-up will be documented with
a focus on deaths considered as cardiovascular-related. Cardiovascular medication changes
with ATC codes and DDDs will be recorded and analyzed with InnoLIMS® Medical or
equivalent software (Section 2.3.1). The medication data yielded will subsequently be
used to model either an improved (reduced medication or dosage) or worsened (added
medication or increased dosage) disease state.

2.3.5. Study Blood Samples

While a set of collected blood samples will be stored directly by the study personnel,
another set is stored to respective collaborative biobanks of each participating clinical center
with partial sample-derived aliquot reservation. The non-biobank study blood samples will
include TEMPUSTM whole blood samples (3 mL × 5) and EDTA blood-derived (9 mL × 3)
plasma aliquots. The biobank samples will include EDTA blood-derived (10 mL × 1)
plasma and buffy coat aliquots as well as blood-derived (10 mL × 1) serum aliquots. In
addition to the above-described set of biobank samples, if needed, a single 3 mL EDTA
blood sample is collected for DNA extraction. The samples will be collected twice in study
cohorts I–III and once in cohort IV (Figure 3).

The first blood samples for cohort I (acute STEMI phase) will be collected within 72 h
after PCI, but the goal is within the first 24 h. While the IHD-EPITRAN blood samples will
be prioritized for processing within 1 to 1.5 h, the processing time span for the biobank
samples can be expected to extend up to 8 h due to practical restraints. A summary
of the study samples, their general processing and principal analytical methods with
corresponding goals pursued are provided in Figure 4.

Whole blood samples—Cellular RNA will be derived from the TEMPUSTM blood
sample tubes designed to preserve whole blood RNA against the otherwise rapid extra-
corporeal degradation. First, the acquired TEMPUSTM blood samples will be vigorously
shaken for 10 s and stored at <−70 ◦C until further processing. Second, the whole-blood
total RNA will be isolated from the rest of the sample material according to the manu-
facturer’s instructions (e.g., TEMPUSTM Spin RNA Isolation Kit, ThermoFisher, Waltham,
MA, USA) before storage for further processing (Section 2.3.7).
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Plasma samples—Cell-free RNA (cfRNA) and surrogate cardiovascular biomarkers
will be assessed from the IHD-EPITRAN sample pool’s EDTA blood-derived plasma
aliquots. For cfRNA analysis, we have performed a confirmatory pilot investigation
following a previously described protocol by Shiotsu et al. [97]. Briefly, plasma will
be separated and aliquoted (900 µL × 10) into RNase-free tubes preloaded with RNA-
stabilizing MLP lysis buffer (270 µL each; catalog ref. 740,365.75, Macherey-Nagel, Düren,
Germany) and stored at <−70 ◦C. The cfRNA will be extracted from MLP plasma utilizing
a purification kit according to the manufacturer’s instructions (e.g., Nucleospin® miRNA
Plasma, Macherey-Nagel, Germany). Based on our initial testing of this protocol, each
preloaded aliquot (900 µL + 270 µL) yielded approximately 17 ng of purified cfRNA, as
measured with Qubit® microRNA Assay kit (ThermoFisher Scientific, USA). The cfRNA
will then be quantitatively (Section 2.3.8) and qualitatively (Section 2.3.9) assessed for m6A
modifications and A-to-I editing events.

The plasma used for the measurement of surrogate cardiovascular biomarkers will be
aliquoted (500 µL× 4–10) without MLP buffer into RNase-free tubes and stored at <−70 ◦C.
The biobank EDTA-blood sample (10mL) will be processed and separated into both buffy
coat (Helsinki, 500 µL × 1 and 300 µL × 1; Tampere, single aliquot) and plasma aliquots
(450 µL × 4) and stored at <−70 ◦C. The serum blood sample will be phase-separated
into 8 aliquots (400 µL) in total. Three aliquots of both serum and plasma are reserved
for the study. While either the buffy coat or whole EDTA blood (3 mL) will be used for
DNA extraction at Helsinki and Tampere biobanks, respectively (Section 2.3.9), the plasma
and serum aliquots will primarily be used for assessment of metabolites and targeted
proteomics (Section 2.3.10). The rest of the buffy coat (after DNA extraction) will be stored
(<−70 ◦C) for later use, such as leukocyte-specific RNA extraction.

Metabolite surrogate cardiovascular biomarkers—Metabolites will be principally as-
sessed from biobank plasma aliquots due to their longer processing timespan suboptimal
for RNA analytics. Analysis of metabolites may be extended to untargeted metabolomics
or focus on targeted selected metabolites (Figure 4). For example, based on a metabolomic
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profiling of human plasma, TMAO, a gut microbiota-derived metabolite from choline, has
recently been suggested to stimulate atherosclerosis and platelet hyperreactivity [11]. Simi-
lar to TMAO, another gut microbiota-derived plasma metabolite, phenylacetylglutamine
(PAG), has recently been identified to associate with increased composite risk of MACE
(MI, Stroke, Death) [12].

Non-metabolite surrogate cardiovascular biomarkers—The IHD-EPITRAN will cor-
relate acquired IHD-related blood epitranscriptomes with surrogate biomarkers for car-
diovascular diseases, such as hsCRP [7], sST2 [8], copeptin [10], blood cholesterols and
N-terminal pro-hormone B-type natriuretic peptide (NT-proBNP) [98]. These will be ana-
lyzed from non-MLP plasma with specific commercial, principally ELISA-based, laboratory
kits. An online-only data Supplement Table S1 lists a selected summary of articles assessing
the biomarkers measured in the IHD-EPITRAN [10–13,99–114].

2.3.6. Right Atrial Appendage Tissue Samples

The right atrial appendage (RAA) is often manipulated during cardiac surgery to
assemble bypass circulation. Moreover, RAA has been evaluated as a safe source for cardiac
tissue for both diagnostic and therapeutic applications [115]. During the IHD-EPITRAN, a
small RAA tissue sample, the size of which will be guided by clinical characteristics, will
be collected from the study participants in cohorts II and III to enable an organ-specific
characterization of the RNA epitranscriptomes (Figure 4). The perioperatively collected
RAA tissue sample will be divided into three pieces that will be stored in (1) RNAlater
solution (e.g., AM7021, ThermoFisher Scientific Inc., Waltham, MA, USA) with an overnight
incubation (4 ◦C) prior to storage (<−70 ◦C), (2) formalin (4%) for two weeks and then
in ethanol (70%; Section 2.3.9) to prevent overfixation or (3) snap-frozen preferably with
isopentane immersion and liquid nitrogen and stored (<−70 ◦C). The RNA isolation of
the RNA later-stored RAA samples is done as previously [115]. A brief consideration
of the RNA fractionation pipeline is provided in Section 2.3.7. The piece of RAA tissue
snap-frozen in isopentane immersion will be a well-suited material for many histologic
and omics applications, such as untargeted proteomics and spatial RNA transcriptomics
(Sections 2.3.9 and 2.3.10, respectively).

2.3.7. RNA-Stabilized Blood and RAA Tissue RNA Fractionation

The IHD-EPITRAN study will characterize the various RNA-species-specific epi-
transcriptomic alterations in blood in IHD. Prior to the RNA fractionation itself, sample
DNA is either degraded with DNAse treatment according to the kit manufacturers’ in-
structions (plasma cfRNA and RAA tissue RNA extraction) or phase-separated via RNA
pelleting (RNA-stabilized TEMPUSTM blood extraction). Further, extracted total RNA will
be subjected to fractionation to achieve distinct sequencing datasets for protein-coding
messenger RNAs (mRNAs), small RNAs with regulatory properties (e.g., micro-RNAs and
long non-coding RNAs), as well as ribosomal and transfer RNAs. Due to both pragmatic
reasons and probable future developments, the specific RNA fractionation protocol is left
undecided, but will include most probably the following: depletion or blockage of globin
RNAs, depletion of ribosomal RNAs, as well as a poly-A capture of mRNAs. Moreover,
since the third-generation direct long-read nanopore sequencing (Section 2.3.9) requires
either a poly-A or custom tail for the recognition by a sequencing adapter, poly-A tailing or
custom tailing of fractionated RNAs will be performed prior to sequencing (Section 2.3.9).

2.3.8. Quantitative RNA Modification Analysis with UHPLC-LC-MS/MS

A quantitative analysis, with an emphasis on both the m6A and inosine (I), for the eight
epitranscriptomic modifications (e.g., m1A, m6A, m6Am, ac6A, m5C, m7G, pseudouridine
[Ψ] and I) will be performed utilizing an ultra-high-performance triple quadrupole liquid
chromatography tandem mass spectrometry (UHPLC-LC-MS/MS) method as previously
described [116].
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2.3.9. Qualitative Analyses of RNA Modifications

Sequencing—To expedite the various sequencing tasks in the IHD-EPITRAN study,
the sequencing services will be purchased from third party sequencers after competitive
tendering. The raw data will be acquired and analyzed by the IHD-EPITRAN Consortium
(Section 2.5). While methylated immunoprecipitation (meRIP) [117,118] and direct long-
read sequencing [119] are the two most widely used examples of the RNA sequencing
protocols utilized for m6A identification, others have also been described [120,121].

The final sequencing protocol will be defined during the course of the study. Sev-
eral techniques, including untargeted epitranscriptomic sequencing methods, to mea-
sure m6A are available. Their strengths and weaknesses are listed in Supplementary
Table S2 [20,116–142]. First, the IHD-EPITRAN study plans to utilize, based on competi-
tive tendering, one of the various mainstay second generation sequencing platforms for
detecting the epitranscriptomically modified transcripts for initial insight [117,118,120,121].
Of these, albeit shown to come with its technical limitations especially regarding in-sample
replicate reproducibility [122], meRIP-sequencing is preferred as the most widespread m6A
sequencing methodology used to date [117,118]. Such sequencing can be performed for
all study samples of the IHD-EPITRAN (RNA-stabilized TEMPUSTM whole blood and its
RNA fractions, EDTA-blood derived plasma, and RAA tissue) to acquire a fraction-wise
data of m6A-enriched RNA transcripts to be compared against the novel third generation,
or direct long-read, sequencing with its providable single transcript-level in situ m6A
datamaps [119]. In more detail, nanopore sequencing (Oxford Nanopore Technologies,
Oxford, UK) is the most well-established prototype of such direct sequencing basing its
function in carefully designed protein nanopores embedded within a semipermeable mem-
brane compartmentalizing loaded and tailed native sample RNAs initially to the sample
chamber medium [119]. Next, electrical potential difference (voltage) is imposed across
this nanoporous membrane with negative charge on the side of the sample medium. These
sophisticated nanopores not only act as the sole passages of the ionic currents through the
membrane, and thus create a recordable reference signal, but also allow the passthrough
of the native sample RNAs crucially preserved in terms of their contained base modi-
fications. As native RNAs pass through the nanopores, characteristic disruptions from
each consecutive RNA base, both unmodified and modified, are formed and recorded
relative to the reference signal [119]. These disruptions are ultimately decodable in silico
with a base calling algorithm EpiNano (https://github.com/enovoa/EpiNano, accessed
on 18 June 2021) that is currently validated for m6A with ~90% accuracy, but expectable
to become more precise as well as putative to expand to other modifications as well
(e.g., m5C, and m7G). In addition, either exome or genome sequencing will be performed
from buffy coat or EDTA blood extracted DNA (Section 2.3.5) for comparison with respec-
tive RNA sequence to pinpoint A-to-I editing events [143].

Histological staining—Considering the encouraging evidence suggesting detection
of m6A in the near future with fluorescence in situ hybridization (FISH) [144], we aim to
perform a m6A-targeted staining to reveal the in situ localization of modified RNAs in his-
tological sections of the RAA tissue as a supplementary insight to the UHPLC-LC-MS/MS
and sequencing. This approach could enable us to pinpoint the varied m6A expression
associated with IHD to the distinct cell groups present in the human heart (i.e., vasculature,
cardiac interstitium, and cardiomyocytes). Furthermore, since the formalin/ethanol-stored
and isopentane snap-frozen RAA tissue pieces constitute high-quality material with re-
gard to histological approaches, targeted protein immunohistochemistry, RNA in situ
hybridization (e.g., RNAscope®, Advanced Cell Diagnostics, Inc., Bio-Techne Corporation,
Minneapolis, MN, USA), and spatial RNA transcriptomics (e.g., Visium, 10× Genomics,
Pleasanton, CA, USA), will be assessed for utilization to maximize the still sparse histo-
logical insight regarding epitranscriptomics in human heart in IHD. This can be achieved,
for example, by staining for both the enzymes itself governing A-to-I editing and m6A
and their respective mRNAs. Moreover, spatial transcriptome sequence comparison to

https://github.com/enovoa/EpiNano
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the DNA sequence of an individual directly provides unprecedented histological A-to-I
landscapes from human cardiac tissue.

2.3.10. Proteomics

To augment IHD-biomarker discovery and provide referencing measures for the
forthcoming epitranscriptomic alterations, the IHD-EPITRAN study will utilize proteomics
applications for both biobank-stored plasma aliquots and snap-frozen RAA tissue. For
plasma, the suitability of a targeted proteomics approach with a set of several hundreds
of proteins, via application of a cutting-edge multiple reaction monitoring (MRM) and
labeled peptide counterparts, is carefully assessed [145]. For the snap-frozen RAA tissues,
an untargeted label-free mass spectrometry approach is primarily preferred [115,146].

2.4. Power Calculations, Cohort Comparisons, Outcomes, and Data Management

The group sizes were determined with a RNAseqPS tool designed for evaluating
statistical power for sequencing studies [147]. Parameter values (false discovery rate
[FDR] <0.05, total number of genes for testing 20,000, predicted prognostic genes 1500
with a minimum fold change threshold of 2 for differential expression and average read
counts of 10 for prognostic genes) were derived from the applicable study regarding m6A
during hypertrophy and HF [148]. A mean dispersion value of 0.215 was doubled (0.43)
and applied for the calculations. The utilized mean was based on four assessed sequencing
datasets with unrelated samples and dispersions ranging from 0.15 to 0.28 [149]. Based on
the power analysis, n = 44 per cohort generated a power of 0.95. However, the groups sizes
were fixed to n = 50 per cohort to address possible preanalytical errors at this initial phase.
Analyses with smaller sample sizes will be first performed, followed by the larger sized
analyses based on the first results and methodological optimization.

Currently, there are no reports addressing either gender or age dependent changes in
neither blood nor muscle tissue epitranscriptomes. As such, the produced data in the IHD-
EPITRAN study will be referenced and assessed against the typical common confounding
variables, such as gender, age, comorbidities, and medication. If needed, the effects will be
statistically adjusted. The IHD-EPITRAN consortium (Section 2.5) includes experts with
statistics expertise and knowhow.

The study cohort comparisons used to acquire the study outcomes of the IHD-
EPITRAN study are presented in Figure 5 and Table 3, respectively. The project Data
Management Plan (DMP) is maintained on the webpage of the IHD-EPITRAN study
(www.ihd-epitran.com).

Table 3. Planned outcomes of the IHD-EPITRAN study. Outcome 1 and outcomes 2–5 encase inter- and intra-cohort
comparisons, respectively. Morbidity parameters: Section 2.3.2. A-to-I, adenosine-to-inosine; AVR, aortic valve replacement
(III); AVS, aortic valve stenosis; CABG, coronary artery bypass grafting (II); CCTA, coronary computed tomography
angiogram (IV); m6A, N6-methyladenosine; IR, ischemia-reperfusion; PCI, percutaneous coronary intervention; STEMI,
ST-elevation MI (I).

Primary Secondary

1. Study sample m6A and A-to-I profiles from the recruitment stage
associating with IHD and AVS pathophysiology
1.1. Acute IR controlled for stable ishcemia, pressure overload, and
homeostasis (I vs. II-III-IV)
1.2. Stable ishcemia controlled for acute IR, pressure overload, and
homeostasis (II vs. I-III-IV)
1.3. Acute IR controlled for homeostasis (I vs. IV)
1.4. Pressure overload controlled for acute IR, stable ishcemia, and
hemeostasis (III vs. I-II-IV)

4. Changes in the study sample m6A and A-to-I profiles
(Recruitment vs. 3-months) associating to
4.1 Therapy effects on Pathophysiology at 3-month follow-up
4.1.1. STEMI-PCI effects (Resolution and relievement acute IR,
remodelingl I vs. I)
4.1.2. IHD-CABG effects (Relievement of stable ischemia, remodeling;
II vs III)
4.1.3. AVS-AVR effects (Relievement of pressure overload, remodeling;
III vs. III)
4.2 All-cause mortality during 3-month follow-up
4.3 Beneficial/adverse/no-response for therapy as measured via
echocardiography at 3 months
4.4 Surrogate (non-)metabolite CVD biomarker levels at recruitment,
3 months, changes between

www.ihd-epitran.com
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Table 3. Cont.

Primary Secondary

2. Study sample m6A and A-to-I profiles from the recruitment stage
associating with 3-moth follow-up clinicial parmeters
2.1. Cardiovascular mortality
2.2 Cardiovascular morbidity
2.3. MACCE
2.4 Cardiovascular medication increases or reductions

5. study sample m6A and A-to-I profiles from the recruitment stage as
in outcomes 4.2.–4.5.

3. Changes in the sample m6A and A-to-I profiles
(recruitment vs. 3-months) as in outcome 2

6. Study sample quantitative alterations in other RNA modifications as
in outcomes 1–5 (2.3.8.)

7. Plasma metabolute and non-metabolite CVD biomarkers as in
outcomes 1–5 (excl.4.4) (2.3.5.)

8. Biobank plasma and RAA sample proteomic profiles as in outcomes
1–5 (2.3.10.)

9. Whole blood sample transcriptome-based leukpcyte profiles as in
outcomes 1–5
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Figure 5. Principal study cohort comparisons in the IHD-EPITRAN study. Referred outcomes are listed in Table 3 (A).
Venn diagram-based illustration of the preferred four-partite approach, due to its highest degree of adjustments, to acquire
inter-cohort comparison-based outcomes. (B). Three-partite comparison scheme to enable comparisons even in the possible
case of delay in one cohort recruitment, which is also the case with (C) depicting pairwise comparisons with lest adjustments
for inter-cohort outcomes. Intracohort outcomes are achieved via pairwise prospective comparisons. (D). Timeline for the
prospective outcome comparisons. Long-term follow-up of the study cohorts I-IV could provide dimensions of detecting
incident and IHD exacerbations (Section 2.6 and Discussion). Abbreviations: AVR, aortic valve replacement cohort III;
AVS, aortic valve stenosis; CABG, coronary artery bypass grafting cohort II; CCTA, coronary computed tomography
angiogram cohort I; CVD, cardiovascular disease; IHD, ischemic heart disease, MACCE, major adverse cardiovascular and
cerebrovascular event; PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction cohort I.

2.5. Collaborators, the IHD-EPITRAN Consortium

The IHD-EPITRAN study has been designed in collaboration with project members
consisting of cardiology and cardiac surgery specialist clinicians and scientists focusing on
genomics, proteomics, RNA m6A, and A-to-I analytical methodologies and bioinformatics,
and in silico, in vitro, and in vivo drug development. This interdisciplinary team, the IHD-
EPITRAN Consortium, will enable the study to synergistically perform patient recruitment,
sample collection, and preparation followed by detailed bioinformatic analyses of the
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epitranscriptomic m6A and A-to-I editing landscapes in circulating blood and RAA tissue
during acute and stable IHD, AVS, and cardiac health. While HUS and the Department of
Pharmacology from University of Helsinki (UH) share responsibility as the data controllers,
the current collaborator organizations are listed in Table 4. The IHD-EPITRAN Consortium
warmly welcomes interested clinical and scientific centers to participate in the study
(www.ihd-epitran.com; see below).

Table 4. Current controller and collaborator centers of the IHD-EPITRAN study with respective main responsibilities.
A-to-I, Adenosine-to-inosine RNA editing; AVR, Aortic valve replacement surgery cohort III; AVS, aortic valve stenosis;
CABG, coronary artery bypass surgery cohort II; CCTA, coronary computed tomography angiogram cohort IV; ICA, invasive
coronary angiography; meRIP-seq, methylated RNA immunoprecipitation sequencing; m6A, N6-methyladenosine; PCI,
percutaneous coronary intervention; TTE, transthoracic echocardiography.

Controllers Main responsibility area/task

Heart and Lung Center & Cardiac Unit, Helsinki
University Hospital (HUS), Finland

Patient recruitment; clinicial evaluations; operations (PCA, CABG,
AVR); imagings (ICA, CCTA, TTE); control visits; study sample
collection; registry data storage and governace; sample storage

Department of Pharmacology, University of Helsinki
(UH), Finland

Coordination of (1) collaboration, (2)funding acquisition and (3)
competitve tendering; RNA exctraction and initial sample quality
measurements; academic analyses; scientific publishing

Collaborator centers

Heart Hospital, Tampere Unviersity Hospital
(TAYS), Finland

Patients recruitment (cohort III); clinical evaluations; operations
(AVR); imagings (ICA, TTE); control visits; sample collection; clinical
data and sample storage

Helsinki and Tampere Biobanks, Finland Additional biobank sample collection and storage; DNA extraction;
protocal designing

Meilahti Clinical Proteomics Core Faculity, UH, Finland Targeted proteomics from plasma and snap-frozen RAA tissue
samples; protocal designing

Chemistry Unit, Ginnish Food Authority, Finland Specific measurements and analyses of modified RNA necleotides
from via UHPLC-MS.MS methodolgy

Folkhälsan Research Center, Finland
Leading bioinformatics of second and third generation RNA
sequencing targeting modifications (m6A) as well as DNA-to-RNA
sequence matching (A-to-I)

Middle East Technical Univeristy, Ankara, Turkey Ollaboration in the bioinformatics with Folkhälsan, specific share of
responsiblities is decided later

Koç University, Istanbul, Turkey See above

University of Tartu, Estonia Leading the collaboration for the development of potential binding
molecules as novel drugs for IHD

2.6. Long-Term Follow-Up, IHD-EPITRAN Extensions

Long-term follow-up of the study cohorts for up to 10 years or more after recruitment
can provide relevant insight additive to the current cohort comparisons and outcomes,
which are presented in Figure 5 and Table 4, respectively. Specifically, regularly repeated
blood sampling coupled with a suitably synchronized coronary and myocardial evaluation,
recording of IHD exacerbation and new-onset IHD case data in cohorts I and IV, respectively,
produces highly valuable samples suitable for epitranscriptomic scrutinization. Hence,
analysis of such samples equipped with powerful clinical metadata hold potential to deci-
pher epitranscriptomic candidate biomarkers for prognosticating long-term MACCE and
asymptomatically developing, but potentially fatal, IHD. As such, we plan to continue the
IHD-EPITRAN study after the end of active phase by calling the herein recruited partici-
pants for long-term follow-ups. This will be executed as distinct and later-named follow-up
extension studies, named, for example, as IHD-3/5-EPITRAN and IHD-10-EPITRAN.

www.ihd-epitran.com
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3. Expected Results

The IHD-EPITRAN study provides both quantitative and up-to single nucleotide
in situ qualitative m6A and A-to-I focused epitranscriptomic datasets from whole blood,
plasma, and RAA tissues (Sections 2.3.8 and 2.3.9) from both meticulously characterized
and prospectively recruited clinical cohorts representing IHD, AVS, and cardiac health
(Section 2.2). Moreover, both MRM and untargeted proteomic profiles from plasma and
snap-frozen RAA tissue, respectively, are acquired (Section 2.3.10) alongside comprehensive
panels of plasma metabolite and non-metabolite surrogate CVD biomarkers (Section 2.3.5).
Additionally, in situ histological landscapes of A-to-I editome and m6A governing enzyme
expressions from clinical RAA tissue samples affected by both IHD pathophysiology and
AVS pressure overload are produced (Section 2.3.9).

The controlled prospective cohort design of the study (Section 2.2, Figure 3) enables
multiple clinically relevant aspects to be evaluated for the aforesaid datasets. For example,
IHD vs. non-IHD distinctions, comparison of acute and chronic manifestations of IHD,
therapy evaluation and long-term detection of IHD exacerbations, as well as newly aris-
ing IHD (Section 2.6) are both achievable and assessable regarding these datasets when
referenced to the comprehensively recorded clinical metadata (Sections 2.3.1–2.3.4). The
arising key outcomes are listed in Table 3 and illustrated in Figure 5. Importantly, the study
is expected to identify several IHD-specific candidate modified RNAs as well as possible
IHD-associated (consensus) sequences that harbor epitranscriptomic alterations, as recently
suggested from human failing hypertrophic myocardium [36]. Because RNA modifications
other than m6A and A-to-I are to be quantitatively evaluated as well, the study results can
help us to better understand also the other epitranscriptomic pathway contributions to
IHD pathophysiology.

Furthermore, considering the rapid development of epitranscriptomic assessment
methodologies (especially machine learning based modification-oriented base calling algo-
rithms such as EpiNano), it is expectable that the current panel of qualitatively assessable
RNA modifications from the third generation sequencing datasets, yet restricted to m6A, ex-
pands [119]. Hence, the sequencing datasets produced in the course of the IHD-EPITRAN
could later be subjected to, for example, m5C (N5-methylcytosine)-targeted analysis. The
study produces carefully recorded echocardiographic raw data, which can be used not
only as a state-of-the-art reference guiding interpretation of the aforesaid epitranscriptome-
oriented exploratory datasets, but also as a standalone source of insight when compared
against other recorded clinical variables as well as CCTA and ICA imaging results. Lastly,
the SYNTAX-scores for IHD complexity may be utilized to correlate intracohort epitran-
scriptomic profiles with the locations and extent, and thus indirectly activity, of coronary
atherosclerosis.

4. Discussion

Despite advances in medical care, IHD remains the global leading cause of death [1].
Combined with the lack of validated blood biomarkers for exposing either early-stage or
established IHD, the need to find IHD-specific biomarkers is evident [12]. More specifically,
the current risk factors and calculators provide rigorously validated epidemiology-based
risk estimates for the long-term (usually 10-year timespan) emergence of “hard” IHD out-
comes (e.g., fatal IHD, MI, stroke), which, however, are subjects for considerable variation
both in time and across cultures, as recently reviewed [18]. As such, they cannot directly
expose, and thus differentiate, individuals harboring an asymptomatically progressing IHD
from those devoid of such disease activity. Thus, the current estimation tools inevitably
overestimate the future risk for IHD events for some while critically underestimating
it for the others. This manifests as suboptimally targeted resources for patient counsel-
ing, self-care motivation, and medical interventions, i.e., secondary prevention. Hence,
identification of blood biomarker(s) capable to mirror the IHD pathogenesis per se could
better (1) stand time and changing lifestyles and (2) shift the diagnostic and therapeutic
decision-making guidelines of asymptomatic patients from the current core dependence



Int. J. Mol. Sci. 2021, 22, 6630 17 of 28

on epidemiology-based risk estimations towards increasingly individualized consider-
ations. In practice, such shift could lead to both better-timed and targeted secondary
prevention ultimately reducing the progression of IHD towards incurable, disabling and
fatal late-stage complications, such as congestive HF. Furthermore, as originally proposed
already by Wilson and Jungner in 1968, IHD fulfils most of the key criteria for a condition
amenable to mass screening, including high disease prevalence, morbidity, and mortality,
existing treatments, and secular development through precursor states (endothelial stress—
leukocyte infiltration—atherogenic strands—obstructive plaques and ischemia—plaque
instability—plaque rupture and infarction—tissue destruction—congestive HF) [150].

Although the study of RNA modifications, epitranscriptomics remains in its infancy,
methodological breakthroughs of the last decade have enabled identification of these
modifications with such accuracy that their large-scale screening is rational [117–121,143].
Encouragingly, research findings suggest both m6A and A-to-I to act as contributors
or even potential initiators and drivers for several cardiovascular physiological and
pathological processes including cardiogenesis, angiogenesis, hypertension, hypertro-
phy, atherosclerosis, ischemia, ischemia-reperfusion, fibrosis, HF, congenital heart disease,
stroke, aneurysms, as well as cardiac repair and regeneration [25,32–48,51–56]. Remarkably,
the first indication for coronary atherosclerosis to be reflected in the m6A content of mRNAs
and long non-coding RNAs of peripheral mononuclear cells with suggested involvement
in its pathophysiology has just recently been reported [151]. However, to the best of our
knowledge, the IHD-EPITRAN is yet the first controlled prospective observational clinical
study recording meticulous metadata to specifically support its goal to broadly address
blood epitranscriptomics in IHD with diverse sample collection designed for the (near-)
instant halting of RNA degradation from the moment of sample collection. As such, the
IHD-EPITRAN study responds to the recently voiced “epitranscriptomic challenge” [152].

Etiologically, IHD develops due to atherosclerosis in coronary arteries with origins
often tracing back to early adolescence [153]. As a currently understood initiating step,
buildup of cholesterol and lipoproteins on sites of both disturbed blood flow and low
shear stress induces—dependent on endothelial stress, local dendritic cells, chemokines,
endothelium-expressed homing receptors, and platelets—homing and extravasation of
various populations of leukocytes and their pro-inflammatory polarized enrichment at the
site of such lesions [57,154–156]. On these sites, monocytes, hardwired to rapidly differ-
entiate into inflammatory macrophages, ultimately transform into foam cells following
their phagocytosis of subintimal lipids as a clearing attempt of such wrong mater at the
wrong place [57]. However, macrophages simultaneously also secrete paracrine factors,
such as netrin-1 [157], that hamper their effective egress from the lesions. As such, the
plaque-residing macrophages keep proliferating and eventually die leading to on-site
necrosis, formation of necrotic lipid cores with sustained inflammation, and production of
both cytokines and reactive oxygen species (ROS) [58]. Such a pernicious milieu promotes
an inflammatory response also in the plaque-lining endothelium. Increased endothelial
permeability and homing receptor expression intensify leukocyte extravasation to the
growing and weakening plaques giving rise to IHD and eventually MI [60]. Simultane-
ously, the paracrine signaling between myocardium and the newly dysfunctional coronary
endothelium fall rapidly into disarray from its baseline reciprocal state. This is manifested
not only as inappropriately increased production of vasoconstrictors, such as endothelin 1,
but also by dampened production of critical vasodilators, such as nitric oxide, prostacyclin,
and neuregulins promoting the deepening of myocardial ischemia [61,158]. The inflamed
plaque-myocardial-microenvironment also disseminates systemic signals in the form of
autonomous nervous system activation, circulatory cells, and soluble signaling molecules,
such as cytokines, which induce atherosclerosis-accelerating responses in both immune and
hematopoietic systems. Spleen and bone marrow, the two most studied extracardiac organs
responding to these cues, overproduce polarized monocytes promoting further plaque inva-
sion and increase the proliferation of HSCs accelerating the efflorescence proatherosclerotic
clonal hematopoiesis, respectively [57,62–67].



Int. J. Mol. Sci. 2021, 22, 6630 18 of 28

The hypothesis of the IHD-EPITRAN study states that m6A and A-to-I modifications
in blood-derived RNAs mirror atherosclerosis, IHD and MI. At cellular and molecular
levels, these modifications have been suggested to have varying degrees of dynamics
relative to the RNA transcript in which they reside. [159–164]. Moreover, several sites in
a single transcript can be targeted for modification. Together, these provide molecular
foundations for biomarker discovery, as these modification profiles could store sufficiently
stable information.

To provide insight into the possible mechanistic linkages between m6A and A-to-I
modification systems and IHD, we provide here a more detailed view into three putative
mechanisms (Figure 2). First, ischemic myocardium may produce epitranscriptomically
detectable signals to the bloodstream in the form of either ischemia-primed monocytes
patrolling between myocardium and circulation (as suggested during cardiac homeostasis
and MI [70,71]) or as secreted EVs. Indeed, ischemic myocardium is known to abundantly
secrete EVs encasing cardiac-specific miRNAs with promising biomarker properties [76,77],
and such EVs may also hold modified RNAs. This is suggested since m6A [27] and A-to-
I [22,51,52] have been shown to exist in miRNAs and regulate their biogenesis and targets.
Besides, a recent report provides a proof-of-concept for epitranscriptomic signal discovery
from EVs, as the m6A deposition onto miR-19 during its biogenesis enhances its loading
into EVs [82]. Second, similar EVs containing m6A or A-to-I decorated RNAs can also arise
from biological sources relevant for IHD other than ischemic myocardium. Such assertion
is conceptualized through knowledge that apoptotic leukocytes from coronary plaques,
plaque-lining endothelium [59], platelets adhering such endothelium, and hypertension-
induced circulating platelets shed EVs as a part of their paracrine signaling [78–81]. Fur-
thermore, a recent report indicates the METTL3-mediated m6A-hypermethylation to act
as a driver of the initiating atherogenic events in vascular endothelium subjected to both
disturbed flow and oscillatory shear stress [75].

Thirdly, we postulate that the earlier suggested [63–66] and recently, in terms of causal-
ity, shaped [62] vicious cycle where atherosclerosis stimulates clonal hematopoiesis that
circles back to further promote atherosclerosis through yet unknown, possibly cytokine-
based, factors could seed leukocytes into bloodstream with characteristic phenotypes and
m6A and A-to-I signatures mirroring the cycle. Further, we propose such signatures to
be detectable by deep third generation sequencing of whole blood RNA extracts. These
relatively weighty postulations suggesting detectable involvement of epitranscriptomics
with the atherosclerosis-stimulated clonal hematopoiesis rest on several notions: (1) driver
mutations for clonal hematopoiesis in HSCs, when present, often reside in epigenetic
or epitranscriptomic targets [83], and (2) multiple governing enzymes of A-to-I [84] and
m6A [31,85–88] have been shown to be essential for maintaining normal hematopoiesis. Fi-
nally, as proof-of-principles, emerging evidence suggests blood epitranscriptomes to act as
potential source of biomarkers for coronary atherosclerosis and thus IHD [151], breast [165],
gastric [166], and lung [167] cancers as well as for few other inflammation-centered patholo-
gies than IHD, such as systemic lupus erythematosus [168] and rheumatoid arthritis [169].

Considering the multileveled entanglement of epitranscriptomics with IHD patho-
physiology, that is even suggested as a driver of some crucial steps of its pathogenesis [75],
these modifications could also provide a novel source of therapeutic drug targets for
IHD. Indeed, small molecule ligands for METTL3 writer complex [116], FTO [170], and
ALKBH5 [171] erasers have already been described by the members of the IHD-EPITRAN
Consortium. Remarkably, just recently, a potent METTL3 inhibitor has also been reported
with leukemia-repressing effects in vivo in mice, providing simultaneously an enchanting
proof-of-principle and a seminal endeavor to thrust the door ajar into the yet uncharted
realm of epitranscriptomics-based pharmacology in vivo—ultimately shifting eyes also
increasingly towards the clinic [172]. Hence, both the existing and future breakthroughs
regarding epitranscriptomic pharmacology is closely monitored and implemented accord-
ingly to the mid/late phases of the IHD-EPITRAN study as a further applicatory dimension.
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A list of the study strengths and limitations is given in Table 5. Major strengths of the
IHD-EPITRAN study include: (1) wide interdisciplinary collaboration network (Table 3)
that enables simultaneous participant recruitment to (2) the relevant IHD and non-IHD
cohorts, (3) meticulous examination of the degree of coronary atherosclerosis, and (4)
comprehensive recording of major confounding variables. As limitations, we cannot fully
exclude the effects of systemic atherosclerosis and considering the unmet need to detect
asymptomatic IHD, the current IHD-EPITRAN study protocol with its brief follow-up
cannot identify biomarkers for subclinical IHD due to required morbidity. However, the
current protocol is expected to provide a set of candidate biomarkers reflecting clinically
manifest IHD, its severity and therapeutic responses. Furthermore, a long-term follow-up
of the study cohorts without IHD (AVR III and CCTA IV) rises to respond to the unmet
need of subclinical IHD biomarkers by providing a valuable window of opportunity to
assess the time course of IHD development from an epitranscriptomic point of view. In
addition, such follow-up of the IHD cohorts (STEMI I and CABG II) can be expected to
provide biomarkers with prognostic properties. Moreover, the ability of epitranscriptomics-
based blood biomarkers to reflect the responses to both current and novel cardiovascular
therapies may extend their clinical applicability even further [114,115,173].

Table 5. Consideration of the strengths and limitations of the IHD-EPITRAN study. ABI, ankle-brachial index, ATR,
anatomical therapeutic chemical classification system; AVR, aortic valve replacement cohort III; AVS, aortic valve stenosis;
CABG, coronary artery bypass grafting cohort II; CCTA, coronary computed tomography angiogram cohort IV; CVD,
cardiovascular disease; DDT, defined daily dose, EV, extracellular vesicle; ICA, invasive coronary angiography; IHD,
ischemic heart disease; PAD, peripheral artery disease; TTE, transthoracic echocardiography.

Strengths

1. Interdisciplinary collaboration enables simultaneous recruitment, sample handling and measurements.

2. A relevant IHD vs. non-IHD comparison is incorporated with a follow-up dimension as well.

3. Coronary artery status is visualized from all participants recruited.

4. Cardiac function is assessed by TTE from all participants recruited.

5. Exclusion of patients with prior clinically relevant manifestations of atherosclerosis than IHD.

6. Participants are surveyed for vascular claudication. ABI for the cohort II to record any asymptomatic PAD.

7. Cohort morbidity an dother background characteristics are meticulously registered, assessed and reported.

8. Study sample collection is designed to minimize the timespan for RNA vulnerable for degradation.

9. Sample use is optimized for as comprehensive measurements as possible. RNA is fractionated for analyses.

Limitations and management consideration

1. Coronary evaluation is non-uniform across cohorts.
SYNTAX with ICA for complexity assesment of IHD. The CCTA cohort IV is a primary non-IHD control.

2. Complete rule out of the effects of systemic atherosclerosis cannot be achieved
Most earlier manifestations of systemic atherosclerosis lead to exclusion, vascular claudication is surveyed (exclusion criterion) and ABI is
measure from CABG cohort to record any asymptomatic PAD.

3. Limited possiblity to adjust medication effects (cohort IV has neither any CVD pathology nor medication).
ATC and DDT alterations are recorded and reported. Immunomodulatry, edication leads to exclusion.

4. Limited ability to pinpoint precise origins of the forthecoming epitranscriptomic alterations.
Buffy coat leukpcytes can be used for validation, plasma cfRNA is principally derived from EVs.

5. Incapability to identify biomarkers directly for subclinical IHD due to required cohort morbidity.
(1) Current study assesses the harnessing potential of epitranscriptomics for a source of IHD biomarkers
(2) Long-term follow-up of cohort IV can address the task.
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5. Conclusions

In conclusion, the IHD-EPITRAN study with its IHD vs. non-IHD cohort design
evaluates transcriptome-wide alterations in patients’ blood RNA m6A and A-to-I profiles
for discovery of IHD biomarkers and druggable targets. Consequently, this main goal of the
IHD-EPITRAN study will be achieved via recruitment of patients from four distinct clinical
cohorts, two with IHD and two without IHD, all with carefully assessed coronary status.
The collected sample RNAs will be analyzed with the state-of-the-art contemporary, both
quantitative and qualitative methods, for epitranscriptomic modifications in a seamless
collaborative manner with experts from many disciplines, from specialist physicians to
methodological experts.

6. Contact Us

To further increase its scientific and clinical impact, the IHD-EPITRAN is seeking new
clinical and research centers to join the IHD-EPITRAN Consortium. To contact us, the
IHD-EPITRAN Consortium has set up a web page (www.ihd-epitran.com) that describes
the Consortium members and provides contact information in more detail. The study can
be followed on social media (Twitter: @IHD_EPITRAN) and direct inquiries regarding
participation should be addressed via email (ihd.epitran@gmail.com).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22126630/s1, Table S1: “A selected summary of articles assessing the cardiovascular
biomarkers measured in the IHD-EPITRAN study” and Table S2: “Comparison of the current
techniques to map m6A modification within RNA”.
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