11 research outputs found

    CCR6 is expressed on an IL-10-producing, autoreactive memory T cell population with context-dependent regulatory function

    Get PDF
    Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10–producing memory T cells. Human CD4+CCR6+ memory T cells contained comparable numbers of IL-17– and IL-10–producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)–. In normal human spleens, the majority of CCR6+ memory T cells were in the close vicinity of CCR6+ myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6+ memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6+ T cells induced expression of IL-2, interferon-, CCL20, and CD40L, and autoreactive CCR6+ T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6+ T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions

    CCR6 is expressed on an IL-10–producing, autoreactive memory T cell population with context-dependent regulatory function

    Get PDF
    Interleukin (IL)-10 produced by regulatory T cell subsets is important for the prevention of autoimmunity and immunopathology, but little is known about the phenotype and function of IL-10–producing memory T cells. Human CD4+CCR6+ memory T cells contained comparable numbers of IL-17– and IL-10–producing cells, and CCR6 was induced under both Th17-promoting conditions and upon tolerogenic T cell priming with transforming growth factor (TGF)–β. In normal human spleens, the majority of CCR6+ memory T cells were in the close vicinity of CCR6+ myeloid dendritic cells (mDCs), and strikingly, some of them were secreting IL-10 in situ. Furthermore, CCR6+ memory T cells produced suppressive IL-10 but not IL-2 upon stimulation with autologous immature mDCs ex vivo, and secreted IL-10 efficiently in response to suboptimal T cell receptor (TCR) stimulation with anti-CD3 antibodies. However, optimal TCR stimulation of CCR6+ T cells induced expression of IL-2, interferon-γ, CCL20, and CD40L, and autoreactive CCR6+ T cell lines responded to various recall antigens. Notably, we isolated autoreactive CCR6+ T cell clones with context-dependent behavior that produced IL-10 with autologous mDCs alone, but that secreted IL-2 and proliferated upon stimulation with tetanus toxoid. We propose the novel concept that a population of memory T cells, which is fully equipped to participate in secondary immune responses upon recognition of a relevant recall antigen, contributes to the maintenance of tolerance under steady-state conditions

    Identification of New Hematopoietic Cell Subsets with a Polyclonal Antibody Library Specific for Neglected Proteins

    Get PDF
    The identification of new markers, the expression of which defines new phenotipically and functionally distinct cell subsets, is a main objective in cell biology. We have addressed the issue of identifying new cell specific markers with a reverse proteomic approach whereby approximately 1700 human open reading frames encoding proteins predicted to be transmembrane or secreted have been selected in silico for being poorly known, cloned and expressed in bacteria. These proteins have been purified and used to immunize mice with the aim of obtaining polyclonal antisera mostly specific for linear epitopes. Such a library, made of about 1600 different polyclonal antisera, has been obtained and screened by flow cytometry on cord blood derived CD34+CD45dim cells and on peripheral blood derived mature lymphocytes (PBLs). We identified three new proteins expressed by fractions of CD34+CD45dim cells and eight new proteins expressed by fractions of PBLs. Remarkably, we identified proteins the presence of which had not been demonstrated previously by transcriptomic analysis. From the functional point of view, looking at new proteins expressed on CD34+CD45dim cells, we identified one cell surface protein (MOSC-1) the expression of which on a minority of CD34+ progenitors marks those CD34+CD45dim cells that will go toward monocyte/granulocyte differentiation. In conclusion, we show a new way of looking at the membranome by assessing expression of generally neglected proteins with a library of polyclonal antisera, and in so doing we have identified new potential subsets of hematopoietic progenitors and of mature PBLs

    Results of sera screening by FACS on PBL and Cord Blood cells.

    No full text
    <p>(A) FACS analysis of sera positive on PBLs. PBLs were stained with the indicated sera at the optimal dilution point (1∶50 to 1∶200). The samples were stained also with anti CD3, anti CD19 and anti CD56 mAbs to analyze the sera reactivity upon gating on the different subpopulations. A plot representative of five different donors is shown for each serum. (B) KRTCAP-3 specific serum recognizes PHA-treated cells. PBMCs are treated for 24 hours with 1 µg/ml of PHA. After the treatment both un-stimulated and treated cells are stained with the KRTCAP-3-specific serum. (C) FACS analysis of sera positive on cord blood cells. Cord blood mononuclear cells are stained with the indicated sera at the optimal concentration (1∶50 to 1∶100). The samples are stained also with anti CD45 and anti CD34 mAbs to perform the analysis upon gating on CD34highCD45dim. A plot representative of a least 3 independent donors is shown. Il all the cases (A,B,C,) a staining with the serum of not immunized mice was used as negative control. (D) RT-PCR analysis. a- cDNA from total PBMC were amplified with primers specific for the indicated proteins. b- cDNA from both un-stimulated and PHA-treated PBMC was amplified with KRTCAP-3 specific primers. KRTCAP3 expression is up regulated two to three times. Beta actin amplification is used as normalization. c- cDNA samples from CD34+CD45dim cells were generated by retro-transcription of RNA extracted from a pool of CD34 positive cells from 2–3 independent cord blood units magnetically purified using the Miltenyi CD34 microbeads kit according the manufacturer instruction. The purity of the CD34+CD45dim cells was usually >99%. The samples were amplified with primers specific for the indicated proteins and described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0034395#s2" target="_blank">Methods</a> section.</p

    Assessment of antisera specificity on Hela transfected cells.

    No full text
    <p>Hela cells were transiently transfected with a myc-tag version of the proteins identified with the sera library. At 24 hours from the transfection cells were lysated as described in the Method section. 40 µg of total proteins were loaded on SDS page and a WB analysis was performed using both an anti myc mAb (9E10 clone) and the corresponding antiserum. (A) WB analysis of Hela cells transfected with CRISP-1 and MOSC-1. In both the cases the anti myc mAb and the specific antiserum recognized a protein of the expected molecular weight that is not present in the cells transfected with the mock vector. A comparable result was obtained wit KRTCAP-3 (B), TMCC-1 (C), TMEM38B (D) and SUSD3 (E) transfected cells. The WB analysis of GSG1-L cells (E) and LPPR2 cells (F) shows that neither the anti myc nor the specific antiserum is able to recognize in a specific way a protein in transfected cells.</p

    FACS analysis with sera specific for well-known proteins.

    No full text
    <p>(A) Comparison of the CD8 staining performed on PBL with either a commercially available anti CD8 mAb (BD biosciences) or the anti CD8 alpha antiserum at 1∶100 dilution points. Both the samples were stained also with commercially available anti CD3 and anti CD4 mAb (BD biosciences). The distribution of CD4 and CD8 is analyzed upon gating on CD3 positive cells. (B) Examples of staining with antisera from the library. PBLs from healthy donors were stained with anti CD2, CD1d, CD8 alpha, CD25, CD72, CD80, CD38, and CD86. The expression of CD25 was assessed upon a 24 hours activation of PBLs with 1 µg/ml of PHA. The expression of CD80 and CD86 was assessed upon gating on monocytes after a 24 hours activation of PBLs with 1 µg/ml of PHA. The expression of CD133 was analyzed on cord blood derived CD34+, CD45dim cells. Serum from not immunized mice was used as negative control in all the stainings.</p
    corecore