48 research outputs found

    Detecting z > 10 objects through carbon, nitrogen and oxygen emission lines

    Get PDF
    By redshift of 10, star formation in the first objects should have produced considerable amounts of Carbon, Nitrogen and Oxygen. The submillimeter lines of C, N and O redshift into the millimeter and centimeter bands (0.5 mm -- 1.2 cm), where they may be detectable. High spectral resolution observations could potentially detect inhomogeneities in C, N and O emission, and see the first objects forming at high redshift. We calculate expected intensity fluctuations and discuss frequency and angular resolution required to detect them. For CII emission, we estimate the intensity using two independent methods: the line emission coefficient argument and the luminosity density argument. We find they are in good agreement. At 1+z \sim 10, the typical protogalaxy has a velocity dispersion of 30 km s^{-1} and angular size of 1 arcsecond. If CII is the dominant coolant, then we estimate a characteristic line strength of \sim 0.1 K km s^{-1}. We also discuss other atomic lines and estimate their signal. Observations with angular resolution of 10^{-3} can detect moderately nonlinear fluctuations of amplitude 2 \cdot 10^{-5} times the microwave background. If the intensity fluctuations are detected, they will probe matter density inhomogeneity, chemical evolution and ionization history at high redshifts.Comment: 15 pages, 1 postscript figures included; Uses aaspp4.sty (AASTeX v4.0); Submitted to The Astrophysical Journa

    Cross-Correlating Cosmic Microwave Background Radiation Fluctuations with Redshift Surveys: Detecting the Signature of Gravitational Lensing

    Get PDF
    Density inhomogeneities along the line-of-sight distort fluctuations in the cosmic microwave background. Usually, this effect is thought of as a small second-order effect that mildly alters the statistics of the microwave background fluctuations. We show that there is a first-order effect that is potentially observable if we combine microwave background maps with large redshift surveys. We introduce a new quantity that measures this lensing effect, , where T is the microwave background temperature and δθ\delta \theta is the lensing due to matter in the region probed by the redshift survey. We show that the expected signal is first order in the gravitational lensing bending angle, <(δθ)2>1/2< (\delta \theta)^2 >^{1/2}, and find that it should be easily detectable, (S/N) \sim 15-35, if we combine the Microwave Anisotropy Probe satellite and Sloan Digital Sky Survey data. Measurements of this cross-correlation will directly probe the ``bias'' factor, the relationship between fluctuations in mass and fluctuations in galaxy counts.Comment: 13 pages, 4 postscript figures included; Uses aaspp4.sty (AASTeX v4.0); Accepted for publication in Astrophysical Journal, Part

    Reconstructing Projected Matter Density from Cosmic Microwave Background

    Get PDF
    Gravitational lensing distorts the cosmic microwave background (CMB) anisotropies and imprints a characteristic pattern onto it. The distortions depend on the projected matter density between today and redshift z1100z \sim 1100. In this paper we develop a method for a direct reconstruction of the projected matter density from the CMB anisotropies. This reconstruction is obtained by averaging over quadratic combinations of the derivatives of CMB field. We test the method using simulations and show that it can successfully recover projected density profile of a cluster of galaxies if there are measurable anisotropies on scales smaller than the characteristic cluster size. In the absence of sufficient small scale power the reconstructed maps have low signal to noise on individual structures, but can give a positive detection of the power spectrum or when cross correlated with other maps of large scale structure. We develop an analytic method to reconstruct the power spectrum including the effects of noise and beam smoothing. Tests with Monte Carlo simulations show that we can recover the input power spectrum both on large and small scales, provided that we use maps with sufficiently low noise and high angular resolution.Comment: 21 pages, 9 figures, submitted to PR

    Comparison of the Sachs-Wolfe Effect for Gaussian and Non-Gaussian Fluctuations

    Full text link
    A consequence of non-Gaussian perturbations on the Sachs-Wolfe effect is studied. For a particular power spectrum, predicted Sachs-Wolfe effects are calculated for two cases: Gaussian (random phase) configuration, and a specific kind of non-Gaussian configuration. We obtain a result that the Sachs-Wolfe effect for the latter case is smaller when each temperature fluctuation is properly normalized with respect to the corresponding mass fluctuation δMM(R){\delta M\over M}(R). The physical explanation and the generality of the result are discussed.Comment: 16 page

    Measuring our universe from galaxy redshift surveys

    Get PDF
    Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local universe looks like. While the galaxy distribution traces the bright side of the universe, detailed quantitative analyses of the data have even revealed the dark side of the universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant). We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of Precision Cosmology.Comment: 82 pages, 31 figures, invited review article published in Living Reviews in Relativity, http://www.livingreviews.org/lrr-2004-

    The effect of non--gravitational gas heating in groups and clusters of galaxies

    Full text link
    We present a set of gas-dynamical simulations of galaxy groups and clusters aimed at exploring the effect of non-gravitational heating. We use GASOLINE, a parallel Tree+SPH code, to simulate the formation of four cosmic halos with temperature 0.5<T<8 keV. Non-gravitational heating is implemented in two different ways: (1) by imposing a minimum entropy floor at a given redshift, 1<z<5; (2) by gradually heating gas, proportionally to the SN rate expected from semi-analytical modeling of galaxy formation. Our main results are the following. (a) An extra heating energy of about 1 keV per gas particle is required to reproduce the observed Lx-T relation, independent of whether it is provided so as to create an entropy floor of 50-100 keV cm^2, or is modulated in redshift; our SN feedback recipe provides only 1/3 keV/part. (b) The M-T relation is almost unaffected by non-gravitational heating and follows the M T^{3/2} scaling, with a normalization ~40% higher than observed, independent of the heating scheme. The inclusion of cooling in a run of a small group has the effects of increasing T_ew by ~30%, possibly reconciling simulated and observed M-T relations, and of decreasing Lx by ~40%. In spite of the inclusion of SN feedback energy, almost 40% of the gas becomes cold, in excess of current observational estimates. (abridged)Comment: 18 pages, 15 figures, to appear in MNRAS. Version with high resolution images available at http://www.daut.univ.trieste.it/borgani/LT/lt_1.ps.g

    The Formation of the First Stars in the Universe

    Full text link
    In this review, I survey our current understanding of how the very first stars in the universe formed, with a focus on three main areas of interest: the formation of the first protogalaxies and the cooling of gas within them, the nature and extent of fragmentation within the cool gas, and the physics -- in particular the interplay between protostellar accretion and protostellar feedback -- that serves to determine the final stellar mass. In each of these areas, I have attempted to show how our thinking has developed over recent years, aided in large part by the increasing ease with which we can now perform detailed numerical simulations of primordial star formation. I have also tried to indicate the areas where our understanding remains incomplete, and to identify some of the most important unsolved problems.Comment: 74 pages, 4 figures. Accepted for publication in Space Science Review
    corecore