811 research outputs found

    Synthesis and structures of Cu-Cl-M adducts (M = Zn, Sn, Sb)

    Get PDF

    Excited State Interactions in Flurbiprofen-Tryptophan dyads

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry B, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1021/jp071301z[EN] Fluorescence and laser-flash photolysis measurements have been performed on two pairs of diastereomeric dyads that contain the nonsteroidal anti-inflammatory drug (S)- or (R)-flurbiprofen (FBP) and (S)-tryptophan (Trp), which is a relevant amino acid present in site I of human serum albumin. The fluorescence spectra were obtained when subjected to excitation at 266 nm, where similar to 60% of the light is absorbed by FBP and similar to 40% is absorbed by Trp; the most remarkable feature observed in all dyads was a dramatic fluorescence quenching, and the residual emission was assigned to the Trp chromophore. In addition, an exciplex emission was observed as a broad band between 380 and 500 nm, especially in the case of the (R,S) diastereomers. The fluorescence lifetimes (tau(F)) at lambda(em) = 340 nm were clearly shorter in the dyads than in Trp-derived model compounds; in contrast, the values of tau(F) at lambda(em) = 440 nm (exciplex) were much longer. On the other hand, the typical FBP triplet-triplet transient absorption spectrum was obtained when subjected to laser-flash photolysis, although the signals were less intense than when FBP was directly excited under the same conditions. The main photophysical events in FBP-Trp dyads can be summarized as follows: (1) most of the energy provided by the incident radiation at 266 nm reaches the excited singlet state of Trp ((1)Trp*), either via direct absorption by this chromophore or by singlet singlet energy transfer from excited FBP ((FBP)-F-1*); (2) a minor, yet stereoselective deactivation of (FBP)-F-1* leads to detectable exciplexes and/or radical ion pairs; (3) the main process observed is intramolecular (1)Trp* quenching; and (4) the first triplet excited-state of FBP can be populated by triplet-triplet energy transfer from excited Trp or by back-electron transfer within the charge-separated states.Financial support from the MCYT (CTQ2004-03811) and the Generalitat Valenciana (GV06/099) is gratefully acknowledged. Author I.V. thanks MEC for a fellowship.Vayá Pérez, I.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2007). Excited State Interactions in Flurbiprofen-Tryptophan dyads. The Journal of Physical Chemistry B. 111(31):9363-9371. https://doi.org/10.1021/jp071301zS936393711113

    The multiple sclerosis risk sharing scheme monitoring study - early results and lessons for the future

    Get PDF
    Background: Risk sharing schemes represent an innovative and important approach to the problems of rationing and achieving cost-effectiveness in high cost or controversial health interventions. This study aimed to assess the feasibility of risk sharing schemes, looking at long term clinical outcomes, to determine the price at which high cost treatments would be acceptable to the NHS. Methods: This case study of the first NHS risk sharing scheme, a long term prospective cohort study of beta interferon and glatiramer acetate in multiple sclerosis ( MS) patients in 71 specialist MS centres in UK NHS hospitals, recruited adults with relapsing forms of MS, meeting Association of British Neurologists (ABN) criteria for disease modifying therapy. Outcome measures were: success of recruitment and follow up over the first three years, analysis of baseline and initial follow up data and the prospect of estimating the long term cost-effectiveness of these treatments. Results: Centres consented 5560 patients. Of the 4240 patients who had been in the study for a least one year, annual review data were available for 3730 (88.0%). Of the patients who had been in the study for at least two years and three years, subsequent annual review data were available for 2055 (78.5%) and 265 (71.8%) patients respectively. Baseline characteristics and a small but statistically significant progression of disease were similar to those reported in previous pivotal studies. Conclusion: Successful recruitment, follow up and early data analysis suggest that risk sharing schemes should be able to deliver their objectives. However, important issues of analysis, and political and commercial conflicts of interest still need to be addressed

    Conventional and Genetic Evidence on the Association between Adiposity and CKD

    Get PDF
    Background The size of any causal contribution of central and general adiposity to CKD risk and the underlying mechanism of mediation are unknown. Methods Data from 281,228 UK Biobank participants were used to estimate the relevance of waist-to-hip ratio and body mass index (BMI) to CKD prevalence. Conventional approaches used logistic regression. Genetic analyses used Mendelian randomization (MR) and data from 394 waist-to-hip ratio and 773 BMI-associated loci. Models assessed the role of known mediators (diabetes mellitus and BP) by adjusting for measured values (conventional analyses) or genetic associations of the selected loci (multivariable MR). Results Evidence of CKD was found in 18,034 (6.4%) participants. Each 0.06 higher measured waist-to-hip ratio and each 5-kg/m2 increase in BMI were associated with 69% (odds ratio, 1.69; 95% CI, 1.64 to 1.74) and 58% (1.58; 1.55 to 1.62) higher odds of CKD, respectively. In analogous MR analyses, each 0.06–genetically-predicted higher waist-to-hip ratio was associated with a 29% (1.29; 1.20 to 1.38) increased odds of CKD, and each 5-kg/m2 genetically-predicted higher BMI was associated with a 49% (1.49; 1.39 to 1.59) increased odds. After adjusting for diabetes and measured BP, chi-squared values for associations for waist-to-hip ratio and BMI fell by 56%. In contrast, mediator adjustment using multivariable MR found 83% and 69% reductions in chi-squared values for genetically-predicted waist-to-hip ratio and BMI models, respectively. Conclusions Genetic analyses suggest that conventional associations between central and general adiposity with CKD are largely causal. However, conventional approaches underestimate mediating roles of diabetes, BP, and their correlates. Genetic approaches suggest these mediators explain most of adiposity-CKD–associated risk.</p

    Charting a Course for Smartphones and Wearables to Transform Population Health Research

    Get PDF
    The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people’s lives for the better

    Charting a course for smartphones and wearables to transform population health research

    Get PDF
    The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people’s lives for the bette

    Impact of detecting potentially serious incidental findings during multi-modal imaging [version 3; peer review: 2 approved, 1 approved with reservations]

    Get PDF
    Background: There are limited data on the impact of feedback of incidental findings (IFs) from research imaging.  We evaluated the impact of UK Biobank's protocol for handling potentially serious IFs in a multi-modal imaging study of 100,000 participants (radiographer 'flagging' with radiologist confirmation of potentially serious IFs) compared with systematic radiologist review of all images. Methods: Brain, cardiac and body magnetic resonance, and dual-energy x-ray absorptiometry scans from the first 1000 imaged UK Biobank participants were independently assessed for potentially serious IFs using both protocols. We surveyed participants with potentially serious IFs and their GPs up to six months after imaging to determine subsequent clinical assessments, final diagnoses, emotional, financial and work or activity impacts. Results: Compared to systematic radiologist review, radiographer flagging resulted in substantially fewer participants with potentially serious IFs (179/1000 [17.9%] versus 18/1000 [1.8%]) and a higher proportion with serious final diagnoses (21/179 [11.7%] versus 5/18 [27.8%]). Radiographer flagging missed 16/21 serious final diagnoses (i.e., false negatives), while systematic radiologist review generated large numbers of non-serious final diagnoses (158/179) (i.e., false positives). Almost all (90%) participants had further clinical assessment (including invasive procedures in similar numbers with serious and non-serious final diagnoses [11 and 12 respectively]), with additional impact on emotional wellbeing (16.9%), finances (8.9%), and work or activities (5.6%). Conclusions: Compared with systematic radiologist review, radiographer flagging missed some serious diagnoses, but avoided adverse impacts for many participants with non-serious diagnoses. While systematic radiologist review may benefit some participants, UK Biobank's responsibility to avoid both unnecessary harm to larger numbers of participants and burdening of publicly-funded health services suggests that radiographer flagging is a justifiable approach in the UK Biobank imaging study. The potential scale of non-serious final diagnoses raises questions relating to handling IFs in other settings, such as commercial and public health screening

    Incidence and Characteristics of Total Stroke in the United States

    Get PDF
    BACKGROUND AND PURPOSE: Stroke, increasingly referred to as a "brain attack", is one of the leading causes of death and the leading cause of adult disability in the United States. It has recently been estimated that there were three quarters of a million strokes in the United States in 1995. The aim of this study was to replicate the 1995 estimate and examine if there was an increase from 1995 to 1996 by using a large administrative claims database representative of all 1996 US inpatient discharges. METHODS: We used the Nationwide Inpatient Sample of the Healthcare Cost and Utilization Project, release 5, which contains ≈ 20 percent of all 1996 US inpatient discharges. We identified stroke patients by using the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes from 430 to 438, and we compared the 1996 database with that of 1995. RESULTS: There were 712,000 occurrences of stroke with hospitalization (95% CI 688,000 to 737,000) and an estimated 71,000 occurrences of stroke without hospitalization. This totaled 783,000 occurrences of stroke in 1996, compared to 750,000 in 1995. The overall rate for occurrence of total stroke (first-ever and recurrent) was 269 per 100,000 population (age- and sex-adjusted to 1996 US population). CONCLUSIONS: We estimate that there were 783,000 first-ever or recurrent strokes in the United States during 1996, compared to the figure of 750,000 in 1995. This study replicates and confirms the previous annual estimates of approximately three quarters of a million total strokes. This slight increase is likely due to the aging of the population and the population gain in the US from 1995 to 1996
    corecore