Citation for published version:

Kociok-Köhn, G, Mahon, MF, Molloy, KC \& Sudlow, AL 2014, 'Synthesis and structures of Cu-Cl-M adducts (M = Zn, Sn, Sb)', Main Group Metal Chemistry, vol. 37, no. 1-2, pp. 11-24. https://doi.org/10.1515/mgmc-2013-0051

DOI:
10.1515/mgmc-2013-0051

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication

This is the published version of an article published by De Gruyter and available via: http://dx.doi.org/10.1515/mgmc-2013-0051

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Gabriele Kociok-Köhn, Mary F. Mahon*, Kieran C. Molloy* and Anna L. Sudlow

Synthesis and structures of $\mathrm{Cu}-\mathrm{Cl}-\mathrm{M}$ adducts (M=Zn, Sn, Sb)

Abstract

The novel bimetallic adducts $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}\right]_{2}$. ZnCl_{2} (1), $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right) \mathrm{CuCl}\right]_{2} \cdot \mathrm{ZnCl}_{2}\right\}_{n}$ (2), $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2}\right.$ $\left.\mathrm{Cu}(\mathrm{Cl})_{2} \mathrm{ZnCl}_{2}\right]^{-}(3),\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}^{2} \mathrm{SnCl}_{2}(4),\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{CuSnCl}_{3}$ (5), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl} . \mathrm{SbCl}_{3}\right]_{2}$ (6) and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuCl} \cdot \mathrm{SbCl}_{3}$ (7) have been synthesized from combinations of $\mathrm{R}_{3} \mathrm{P}, \mathrm{CuCl}$ and one of $\mathrm{ZnCl}_{2}, \mathrm{SnCl}_{2}$ or SbCl_{3}, and their structures were determined. $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right]^{+}\left[\mathrm{HPMe}_{3}\right]_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3-}$ (8) and $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]^{-}$(9) have been isolated as minor by-products from the reaction of $\mathrm{Me}_{3} \mathrm{P}, \mathrm{CuCl}$ and SbCl_{3}, and their structures were also determined.

Keywords: antimony; bimetallic; chloride; copper; tin; X-ray crystallography; zinc.

[^0]
Introduction

We have an ongoing interest in the chemistry of precursors for ternary and quaternary multimetal chalcogenides such as $\mathrm{Cu}_{2} \mathrm{SnE}_{3}, \mathrm{CuSbE}_{2}$ and $\mathrm{Cu}_{2} \mathrm{ZnSnE}_{4}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$, which are currently being actively studied as novel energy materials incorporating low-cost, earth-abundant metals (Kociok-Köhn et al., 2013). For example, $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ (CZTS) or the related $\mathrm{Cu}_{2} \mathrm{ZnSnSe}_{4}$ (CZTSe) has been used as an absorber layer in photovoltaic cells with efficiencies that have now exceeded 11\% (Abermann, 2013; Colombara et al., 2013). CuSbS_{2} is, like the widely exploited CuInS_{2}, part of the I-III-VI ${ }_{2}$ class of semiconductors with a chalcopyrite structure. CuSbS_{2} is a direct semiconductor with a band gap of 1.5 eV and as such is an ideal candidate for use as a solar absorber layer in a thin-film solar cell (Lazcano et al., 2001; Dufton et al., 2012; Temple et al., 2012), while the price of antimony is considerably lower than that of indium (Manolache et al., 2007). However, unlike CZTS/

Se, this absorber layer is not, as yet, very widely investigated (Nair et al., 2005; Manolache and Duta, 2007), and to our knowledge, no efficiencies for cells with CuSbS_{2} absorber layers have been reported. $\mathrm{Cu}_{2} \mathrm{SnS}_{3}$ is an example of a ternary material with a high optical absorption coefficient (ca. $10^{4} \mathrm{~cm}^{-1}$) (Guan et al., 2013) and a band gap in the range $1.00-1.19 \mathrm{eV}$ (Su et al., 2012; Guan et al., 2013; Wang et al., 2013) from which solar cells with efficiencies of ca. 2.5\% have been fabricated (Chino et al., 2012; Koike et al., 2012). $\mathrm{Cu}_{2} \mathrm{SnS}_{3}$ has also been used as an intermediate in the synthesis of CZTS nanoparticles (Park et al., 2013).

One of the major challenges in the materials chemistry of these systems is the deposition of thin films from appropriate precursors, particularly in a dynamic methodology such as chemical vapor deposition (CVD), which allows for relatively rapid, large-scale coatings to be fabricated. The dominant problem is matching the decomposition profiles of two or three precursors such that the correct stoichiometry is achieved. Indeed, with regard to CZTS, although a number of routes to thin films via spray pyrolysis (Nakayama and Ito, 1996), sulfurization of electrodeposited metal precursors (Kurihara et al., 2009), nonvacuum electroplating (Ennaoui et al., 2009), spin coating (Yeh et al., 2009), pulsed laser deposition (Moriya et al., 2007) and photochemical deposition (Moriya et al., 2006), sputtering (Ito and Nakazawa, 1988) and co-evaporation (Tanaka et al., 2006) have been reported, there have only been two reports of a successful CVD route to this material (Ramasamy et al., 2012; Kociok-Köhn et al., 2013).

One way in which this problem could be mitigated is by the use of precursors that embody more than one metal in the correct relative ratio in a single precursor, e.g., $\mathrm{Cu}_{2} \mathrm{Zn}, \mathrm{Cu}_{2} \mathrm{Sn}$, CuSb , which would reduce the total number of precursors required in any deposition process. However, to our knowledge, relatively few systems of this type are known (e.g., Nayek et al., 2008), particularly when the need for simplicity (to offer the best chance of good volatility and/or solubility) is also considered. We have thus become interested in the synthesis of simple mixed-metal halide adducts that may provide an entry point into this area of chemistry. There are just three reported molecular structures involving the Cu-X-Sb (X=halogen) linkage, and all involve the [SbF_{6}] anion (Gardberg and Ibers, 2001; Manson et al., 2009; Nakajima et al., 2011). The Cu-X-Sn
system is even rarer with only two cited examples (Veith et al., 1989; Han et al., 2009), and although there are 11 structures that incorporate the Cu-X-Zn moiety, all but two (Mandal et al., 1988; Nakamura et al., 2001) of these are based on coordinated $\left[\mathrm{ZnCl}_{4}\right]^{2-}$ anions (Mandal et al., 1988; Zang et al., 1990; Gou et al., 1992; Prins et al., 1996; Gladkikh et al., 1997; Martin et al., 1998; Curtis and Gladkikh, 2000; Pryma et al., 2003; Shevchenko et al., 2005). Note that framework, rather than molecular, systems such as $\left[\mathrm{Cu}_{n} \mathrm{Zn}_{m-n} \mathrm{Cl}_{2 m}\right]^{n-}$ are known (Martin et al., 1998). In the light of this, we now report the synthesis and structural characterization of novel molecular examples of each of these systems $[\mathrm{Cu} / \mathrm{Zn}, \mathrm{Cu} / \mathrm{Sn}, \mathrm{Cu} / \mathrm{Sb}]$.

Results and discussion

$\mathrm{Cu}-\mathrm{Zn}$ bimetallic systems

$\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}\right]_{2} . \mathrm{ZnCl}_{2}$ (1) was synthesized following a literature method for the synthesis of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuInCl}_{4}$ (Margulieux et al., 2010) by direct reaction of ZnCl_{2} and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}$ in toluene. Although the initial synthesis involved reagents in a 1:1 stoichiometry, the resulting product always formulated as $\mathrm{Cu}_{2} \mathrm{Zn}$; as a result, the synthetic procedure was modified to improve the yield. Similarly, $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right) \mathrm{CuCl}\right]_{2} \cdot \mathrm{ZnCl}_{2}\right\}_{n}$ (2) and $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2}\right.$ $\left.\mathrm{Cu}(\mathrm{Cl})_{2} \mathrm{ZnCl}_{2}\right]^{-}$(3) were synthesized using a similar route, from $\mathrm{ZnCl}_{2}, \mathrm{CuCl}^{2}$ and $\mathrm{Me}_{3} \mathrm{P}$ at $60^{\circ} \mathrm{C}$ in toluene without prior formation and isolation of $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}$. Although 2 retains the $2 \mathrm{Cu}: \mathrm{Zn}$ ratio seen in 1, it contains less phosphine than expected; thus the reaction was repeated with a larger quantity of phosphine, which subsequently afforded the ionic species 3, in which the P:Cu:Zn ratio reflects that of the reagents (Scheme 1).

The characterization of these compounds by any means other than crystallography is difficult as (i) microanalysis does not distinguish between mixtures of the component halides and a true adduct and (ii) nuclear magnetic resonance (NMR) does not help either as the only NMR

$\mathrm{ZnCl}_{2}+2 \mathrm{CuCl}+6 \mathrm{Me}_{3} \mathrm{P} \xrightarrow{\text { toluene, } 60^{\circ} \mathrm{C}, 1 \mathrm{~h}}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}(\mathrm{Cl})_{2} \mathrm{ZnCl}_{2}\right]^{-}(3)$

Scheme 1

Figure 1 The asymmetric unit of 1 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level. Only the α-carbons of the phenyl rings are numbered for clarity; hydrogen atoms have also been omitted. Selected geometric data: $\mathrm{Zn}-\mathrm{Cl}(1) 2.2709(5), \mathrm{Zn}-\mathrm{Cl}(2) 2.2902(5), \mathrm{Cu}-\mathrm{Cl}(1) 2.4555(5), \mathrm{Cu}-\mathrm{Cl}(2) 2.4535(5), \mathrm{Cu}-\mathrm{P}(1) 2.2539(5)$, $\mathrm{Cu}-\mathrm{P}(2) 2.2522(5) \AA ̊ ; \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}(2) 101.647(16), \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}\left(1^{\prime}\right) 105.56(3), \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}\left(2^{\prime}\right) 123.294(17), \mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}\left(2^{\prime}\right) 103.28(3), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{P}(2)$ $129.91(2), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{Cl}(1) 106.773(19), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{Cl}(2) 107.548(18), \mathrm{P}(2)-\mathrm{Cu}-\mathrm{Cl}(1) 105.860(19), \mathrm{P}(2)-\mathrm{Cu}-\mathrm{Cl}(2) 108.077(19), \mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2) 92.154(16)$, $\mathrm{Zn}-\mathrm{Cl}(1)-\mathrm{Cu} 83.228(16), \mathrm{Zn}-\mathrm{Cl}(2)-\mathrm{Cu} 82.879(15)^{\circ}$. Symmetry operation: (') 1-x, y, 1/2-z.
from its chelating role, the ZnCl_{4} tetrahedron in $\mathbf{2}$ becomes markedly more regular [\angle range: $\left.106.16(2)^{\circ}-112.64(3)^{\circ}\right]$. To our knowledge, this polymeric arrangement is unique, with the closest comparison being that of the framework structure of $\left[\mathrm{H}_{3} \mathrm{NMe}\right]^{+}\left[\mathrm{Cu}_{2} \mathrm{Zn}_{2} \mathrm{Cl}_{7}\right]$ (Martin et al., 1998).

The ionic product 3, which results from a protocol that involves a larger quantity of phosphine than in the
synthesis of $\mathbf{2}$, retains a $2 \mathrm{Cu}: \mathrm{Zn}$ ratio but is now formulated as a separated cation/anion pair: $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}\left[\left(\mathrm{Me}_{3}-\right.\right.$ $\mathrm{P})_{2} \mathrm{Cu}\left(\mathrm{Cl}_{2} \mathrm{ZnCl}_{2}\right]$ (Figure 3). Although the tetrahedral cation is unremarkable, the anion can be viewed as half of that seen in $\mathbf{1}$, but with differences. Whereas formally the anion can be viewed as $\left[\mathrm{ZnCl}_{4}\right]^{2}$ - bonded to $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right]^{+}$by analogy to $\mathbf{1}$, there is now marked asymmetry to the $\mathrm{Zn}-\mathrm{Cl}$

Figure 2 The asymmetric unit of 2 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level; hydrogen atoms have been omitted for clarity. Selected geometric data: $\mathrm{Zn}-\mathrm{Cl}(1)$ 2.2927(6), $\mathrm{Zn}-\mathrm{Cl}(2) 2.2885(6), \mathrm{Zn}-\mathrm{Cl}\left(3^{\prime \prime}\right) 2.2563(6), \mathrm{Zn}-\mathrm{Cl}\left(4^{\prime}\right) 2.2547(6), \mathrm{Cu}(1)-\mathrm{P}(1) 2.1913(6), \mathrm{Cu}(1)-\mathrm{Cl}(1) 2.2688(6), \mathrm{Cu}(1)-\mathrm{Cl}(3) 2.3710(6)$, $\mathrm{Cu}(2)-\mathrm{P}(2) 2.1772(6), \mathrm{Cu}(2)-\mathrm{Cl}(2) 2.2639(6), \mathrm{Cu}(2)-\mathrm{Cl}(4) 2.3849(6) \AA \AA^{\circ} \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}(2) 106.16(2), \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}\left(3^{\prime \prime}\right) 108.57(2), \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}\left(4^{\prime}\right)$ $108.46(3), \mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}\left(3^{\prime \prime}\right) 111.85(2), \mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}\left(4^{\prime}\right) 108.89(2), \mathrm{Cl}\left(3^{\prime \prime}\right)-\mathrm{Zn}-\mathrm{Cl}\left(4^{\prime}\right) 112.64(3), \mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(1) 139.36(2), \mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(3) 117.88(3)$, $\mathrm{Cl}(1)-\mathrm{Cu}(1)-\mathrm{Cl}(3) 102.42(2), \mathrm{P}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(2) 142.64(2), \mathrm{P}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(4) 116.43(3), \mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(4) 100.85(2), \mathrm{Cu}(1)-\mathrm{Cl}(1)-\mathrm{Zn} 96.04(2), \mathrm{Cu}(2)-$ $\mathrm{Cl}(2)-\mathrm{Zn} 103.99(2), \mathrm{Zn}^{\prime \prime}-\mathrm{Cl}(3)-\mathrm{Cu}(1) 100.86(2), \mathrm{Zn}^{\prime}-\mathrm{Cl}(4)-\mathrm{Cu}(2) 93.02(2)^{\circ}$. Symmetry operations: (') 1-x, 1-y,1-z; (") 1-x, -y, 1-z.

Figure 3 The asymmetric unit of 3 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level; hydrogen atoms have been omitted for clarity. Selected geometric data: $\mathrm{Zn}-\mathrm{Cl}(1)$ 2.3266(6), $\mathrm{Zn}-\mathrm{Cl}(2) 2.3397$ (7), $\mathrm{Zn}-\mathrm{Cl}(3) 2.2458$ (7), $\mathrm{Zn}-\mathrm{Cl}(4)$ 2.2387(7), $\mathrm{Cu}(1)-\mathrm{P}(3) 2.2716(6), \mathrm{Cu}(1)-\mathrm{P}(4) 2.2715(7), \mathrm{Cu}(1)-\mathrm{P}(5)$ 2.2721(7), $\mathrm{Cu}(1)-$ $\mathrm{P}(6)$ 2.2661(6), $\mathrm{Cu}(2)-\mathrm{Cl}(1) 2.5024(7), \mathrm{Cu}(2)-\mathrm{Cl}(2)$ 2.4282(7), $\mathrm{Cu}(2)-$ $\mathrm{P}(1)$ 2.2227(7), Cu(2)-P(2) 2.2255(7) \AA; $\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}(2) 96.70(2), \mathrm{Cl}(1)-$ $\mathrm{Zn}-\mathrm{Cl}(3) 109.73(3), \mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}(4) 115.91$ (3), $\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}(3) 111.37$ (3), $\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{Cl}(4) 110.22(3), \mathrm{Cl}(3)-\mathrm{Zn}-\mathrm{Cl}(4) 111.98$ (3), $\mathrm{Cl}(1)-\mathrm{Cu}(2)-\mathrm{Cl}(2)$ 90.00 (2), $\mathrm{Cl}(1)-\mathrm{Cu}(2)-\mathrm{P}(1) 105.53$ (3), $\mathrm{Cl}(1)-\mathrm{Cu}(2)-\mathrm{P}(2) 104.60$ (3), $\mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{P}(1) 107.26(3), \mathrm{Cl}(2)-\mathrm{Cu}(2)-\mathrm{P}(2) 106.00$ (3), $\mathrm{P}(1)-\mathrm{Cu}(2)-\mathrm{P}(2)$ 134.51(3), $\mathrm{Zn}-\mathrm{Cl}(1)-\mathrm{Cu}(2) 82.45(2), \mathrm{Zn}-\mathrm{Cl}(2)-\mathrm{Cu}(2) 83.81(2)^{\circ}$.
bonds with those to the terminal halogens being shorter [2.2458(7), 2.2387(7) \AA] than those to the bridging chlorines [2.3266(6), 2.3397(7) \AA], whereas the $\mathrm{Cu}-\mathrm{Cl}$ bonds are also less symmetrical than in $\mathbf{1}$ [2.5024(7), 2.4282(7) \AA]; moreover, the resulting $\mathrm{CuCl}_{2} \mathrm{Zn}$ ring is no longer planar. In comparison with $\mathbf{2}$, the $\mathrm{Cu}-\mathrm{P}$ bonds in the anion are longer [2.2227(7), 2.2255(7) Å], as might be expected from the enhanced coordination number in 3, whereas the Cu-P bonds in the congested four-coordinate cation are longer still $[2.2661(6)-2.2721(7) \AA$ A $]$. The $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}$ion is well known and structures with a variety of counterions have been reported by others (Dempsey and Girolami, 1988; Chi et al., 1992; Eichhöfer et al., 1993; Pätow and Fenske, 2002; Schneider et al., 2007).

Cu-Sn bimetallic systems

Analogous reactions involving SnCl_{2} and either preformed $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}$ or in a one-pot reaction with $\mathrm{CuCl} /$ $\mathrm{Me}_{3} \mathrm{P}$ yielded the $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Sn}$ heterobimetallic species 4 and 5 (Scheme 2).

Scheme 2

Compound 4 is a neutral 1:1 adduct (Figure 4) and is related to both 1 (but as an equivalent 1:1, rather than 2:1, adduct) and 3 (as a neutral equivalent). Compound 4 can be viewed as an $\left[\mathrm{SnCl}_{3}\right]^{-}$anion coordinating a $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right]^{+}$ cation, by analogy with 1 and $\mathbf{3}$, but it is with the latter that the structural similarities are most striking. The $\mathrm{Sn}-\mathrm{Cl}$ bonds divide into a short terminal [2.4562(12) \AA] and longer bridging bonds to the $\mu_{2}-\mathrm{Cl}[2.5402(10), 2.5680(11)$ \AA A] , while the two $\mathrm{Cu}-\mathrm{Cl}$ bonds [2.4516(11), 2.5052(12) \AA] are asymmetric and closely parallel those in 3, and the $\mathrm{Cu}-\mathrm{P}$ bonds err marginally to the shorter side of those in $\mathbf{1}$ [2.2448(11), 2.2534(12) \AA]; like 3, the $\mathrm{CuCl}_{2} \mathrm{Sn}$ ring is nonplanar. The geometry at copper is a distorted tetrahedron, with an angle range that, not surprisingly, resembles that for 1 [\angle range: $\left.88.67(4)^{\circ}-135.81(4)^{\circ}\right]$. The $\left[\mathrm{SnCl}_{3}\right]$ is trigonal pyramidal with a vacant area above the metal for a lone electron pair. What is interesting about the anion/ cation relationship here, which is not seen in $\mathbf{1}$ (but is relevant to the antimony compound 7, below), is the orientation of the phenyl ring attached to $\mathrm{P}(2)$ [$\mathrm{C}(19)-\mathrm{C}(24)]$ with respect to tin (Figure 4). This ring sits above tin with Sn-C distances of 3.647(4)-4.043(4) \AA and a Sn-ring centroid separation of $3.585 \AA$, distances that reflect a much weaker π-interaction than seen in examples where a more cationic tin is bonded to aromatic rings [usually, but not exclusively, solvent molecules (Probst et al., 1990) in [MX_{4}] salts, $\mathrm{M}=\mathrm{B}, \mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5}$ (Schafer et al., 2011), $\mathrm{M}=\mathrm{Al}, \mathrm{X}=\mathrm{Cl}$ (Rodesiler et al., 1975; Weininger et al., 1979; Schmidbaur et al., 1989a,b,c, 1990b, 1991; Frank, 1990a,b), M=Ga, X=Cl (Frank, 1990c)], where the Sn-ring centroid is ca. $2.6 \AA$. It is similar to that in $\left\{\mathrm{Sn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OPh})_{2}\right]_{2}\right\}_{2}$, where, as in 4 , the aromatic ring is part of an ancillary ligand (Sn-ring centroid 3.655 Å) (Lefferts et al., 1980). Interestingly, although all the $C-C$ bonds within the $C(19)-C(24)$ ring are equal within experimental error, those involving $\mathrm{C}(19)$, which is closest to tin [Sn-C(19) 3.647(4); C(19)-C(20) 1.393(6), C(19)$C(24) 1.398(6) \AA$ Å], C(24) [Sn-C(24) 3.673(4) Å] and C(20) [Sn$C(20) 3.813(4) ; C(20)-C(21) 1.392(6) \AA]$, err on the long side compared to the C-C bonds associated with longer $\mathrm{Sn}-\mathrm{C}$ separations [1.372(6)-1.378(6) \AA]. A more general review of p-block/arene compounds is available for the interested reader (Schmidbaur and Schier, 2008).

In contrast, the one-pot reaction involving $\mathrm{Me}_{3} \mathrm{P}$ but retaining the reagent stoichiometry used to generate 4

Figure 4 The asymmetric unit of 4 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level. A co-crystallized toluene molecule has been omitted for clarity, as have the hydrogen atoms; $C(33)$ is obscured by $C(29)$. Selected geometric data: $\mathrm{Sn}-\mathrm{Cl}(1) 2.5680(11), \mathrm{Sn}-\mathrm{Cl}(2) 2.5402(10), \mathrm{Sn}-\mathrm{Cl}(3) 2.4562(12)$, Sn-ring centroid 3.585, Cu-Cl(1) 2.4516(11), Cu-Cl(2) 2.5052(12), Cu-P(1) 2.2448(11), Cu-P(2) 2.2534(12) Å; Cl(1)-Sn-Cl(2) 85.40(3), Cl(1)-Sn$\mathrm{Cl}(3) 92.89(4), \mathrm{Cl}(2)-\mathrm{Sn}-\mathrm{Cl}(3) 92.68(4), \mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2) 88.67(4), \mathrm{Cl}(1)-$ $\mathrm{Cu}-\mathrm{P}(1)$ 111.16(4), Cl(1)-Cu-P(2) 100.74(4), Cl(2)-Cu-P(1) 103.47(4), $\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{P}(2) 107.15(4), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{P}(2) 135.81(4), \mathrm{Cu}-\mathrm{Cl}(1)-\mathrm{Sn} 89.26$ (4), Cu-Cl(2)-Sn 88.72(3) ${ }^{\circ}$
yields complex 5, which incorporates a direct $\mathrm{Sn}-\mathrm{Cu}$ bond (Figure 5). Compound 5 can again be viewed as a $\left[\mathrm{SnCl}_{3}\right]$ anion coordinating a $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cu}\right]^{+}$cation, but now coordination is via tin as a 2 e donor rather than through halide bridges. As a consequence, thereis anadditionalphosphine donor in $\mathbf{5}$ compared to 4 to maintain a tetrahedral geometry at copper. The $\mathrm{Sn}-\mathrm{Cu}$ bond, which is not common, lies in the range $2.5662(14)-2.6160(15) \AA$ across four independent molecules in the asymmetric unit and is longer than in $\mathrm{Ar}\left(\mathrm{SiMe}_{3}\right) \mathrm{SnCu}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Mes}_{2}-2,6\right)$ [2.4992(5) A$]$ (Klett et al., 1999) and $\mathrm{MeB}\left[3-\left(\mathrm{CF}_{3}\right) \mathrm{Pz}\right]_{3} \mathrm{CuSn}(\mathrm{Cl})\left(\mathrm{Bn}_{2} \mathrm{ATI}\right)$ ($\mathrm{Pz}=$ pyrazolyl, $\mathrm{Bn}_{2} \mathrm{ATI}=\mathrm{N}$-benzyl-2-(benzylamino)-troponiminate) [2.4540(4)Å] (Dias et al., 2005), both of which incorporate $\mathrm{Sn}(\mathrm{II}): \rightarrow \mathrm{Cu}(\mathrm{I})$ bonds, and that of a $\mathrm{Sn}(\mathrm{IV})$ $\mathrm{Cu}(\mathrm{I})$ complex, $\mathrm{Ph}_{3} \mathrm{SnCu}(\mathrm{LPr})[\mathrm{LPr}=1,3$-bis(2,6-diisopropyl-phenyl)imidazol-2-ylidene)] [2.469(5) Å] (Bhattacharyya et al., 2008). The tetrahedral geometries at both tin and copper are largely unexceptional, save for the slightly narrower range of $\angle \mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ in 5 [95.75(13) $\left.{ }^{\circ}-96.39(12)^{\circ}\right]$ compared to $4\left[85.40(3)^{\circ}-92.89(4)^{\circ}\right]$, which may reflect the weak π-interaction in the latter.

Figure 5 One of four similar molecules that constitute the asymmetric unit of 5 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level; hydrogen atoms have been omitted for clarity. Selected geometric data: $\mathrm{Sn}(1)-\mathrm{Cu}(1)$ 2.5997(14), $\mathrm{Sn}(1)-\mathrm{Cl}(1) 2.435(3), \mathrm{Sn}(1)-\mathrm{Cl}(2) 2.426(3), \mathrm{Sn}(1)-\mathrm{Cl}(3)$ $2.444(3), \mathrm{Cu}(1)-\mathrm{P}(1) 2.264(3), \mathrm{Cu}(1)-\mathrm{P}(2) 2.242(3), \mathrm{Cu}(1)-\mathrm{P}(3)$ 2.250 (3) \AA; $\mathrm{Cu}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(1) 120.33(9), \mathrm{Cu}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(2)$ 124.33(9), $\mathrm{Cu}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(3) 117.90(10), \mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{Cl}(2) 95.75(13), \mathrm{Cl}(1)-\mathrm{Sn}(1)-$ $\mathrm{Cl}(3) 95.89(14), \mathrm{Cl}(2)-\mathrm{Sn}(1)-\mathrm{Cl}(3) 96.39(12), \mathrm{Sn}(1)-\mathrm{Cu}(1)-\mathrm{P}(1) 98.55(10)$, $\mathrm{Sn}(1)-\mathrm{Cu}(1)-\mathrm{P}(2) 105.55(10), \mathrm{Sn}(1)-\mathrm{Cu}(1)-\mathrm{P}(3)$ 101.99(8), $\mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{P}(2)$ 113.22(14), $P(1)-C u(1)-P(3) 117.41(15), P(2)-C u(1)-P(3) 116.68(13)^{\circ}$.

Cu-Sb bimetallic systems

Following the approaches described above for $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Zn}$ and $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Sn}, \mathrm{Cu}-\mathrm{Sb}-\mathrm{Cl}$ adducts were prepared similarly (Scheme 3):

When a 1:1 reaction stoichiometry is used, the product (6) is a 1:1 adduct, which, in keeping with the earlier discussions, can be thought of as the $\left[\mathrm{SbCl}_{4}\right]$ anion coordinated to a $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right]^{+}$cation. In the solid state, the molecule forms chlorine-bridged dimers to generate a five-coordinate square pyramidal geometry at antimony ($\tau=0.13$) (Addison et al., 1984), while the familiar distorted tetrahedral geometry [\angle range: $81.91(2)^{\circ}-124.46(3)^{\circ}$] is maintained at copper (Figure 6). However, bond length analysis suggests that the anion/cation association is the least appropriate description in this case. Thus, $\mathrm{Cu}-\mathrm{Cl}(1)$ is the shortest of the $\mathrm{Cu}-\mathrm{Cl}$ distances in the $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}$ complexes studied [2.3129(7) \AA] , whereas the bond to the $\mu_{2}-\mathrm{Cl}(2)$ is notably elongated [3.0070(9) \AA]. Similarly, $\mathrm{Cl}(2)$ forms a short bond to antimony $[2.3899(7) \AA \AA]$ and a much

Scheme 3

Figure 6 The asymmetric unit of 6 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level. Only the α-carbons of the phenyl rings are shown for clarity, whereas hydrogen atoms have similarly been omitted. Selected geometric data: $\mathrm{Sb}-\mathrm{Cl}(1) 3.0736(7), \mathrm{Sb}-\mathrm{Cl}(2) 2.3899(7), \mathrm{Sb}-\mathrm{Cl}(3) 2.3875(8), \mathrm{Sb}-\mathrm{Cl}(4) 2.3474(8)$, $\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) 3.2106(6), \mathrm{Cu}-\mathrm{Cl}(1) 2.3129(7), \mathrm{Cu}-\mathrm{Cl}(2) 3.0070(9), \mathrm{Cu}-\mathrm{P}(1) 2.2701(8), \mathrm{Cu}-\mathrm{P}(2) 2.2668(8) \AA \mathrm{Al}$; 1) $-\mathrm{Sb}-\mathrm{Cl}(2) 79.31(2), \mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(3)$ 169.69 (2), $\mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(4) 88.40(2), \mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) 100.202(16), \mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(3) 90.44(3), \mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(4) 95.63(3), \mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) 177.57(3), \mathrm{Cl}(3)-\mathrm{Sb}-$ $\mathrm{Cl}(4) 91.48(3), \mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) 90.08(2), \mathrm{Cl}(4)-\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) 86.73(2), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{Cl}(1) 113.95(3), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{Cl}(2) 105.67(3), \mathrm{P}(1)-\mathrm{Cu}-\mathrm{P}(2) 124.46(3), \mathrm{P}(2)-\mathrm{Cu}-$ $\mathrm{Cl}(1) 121.31(3), \mathrm{P}(2)-\mathrm{Cu}-\mathrm{Cl}(2) 87.59(3), \mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2) 81.91(2), \mathrm{Cu}-\mathrm{Cl}(1)-\mathrm{Sb} 98.88(2), \mathrm{Sb}-\mathrm{Cl}(2)-\mathrm{Cu} 98.96(3)^{\circ}$. Symmetry operation: (') 2-x, -y,1-z.
weaker bridging bond to copper [3.0070(9) Å]. Thus, loose chlorine-bridged association between neutral $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}$ and SbCl_{3} units is a more appropriate description here. Of the three chlorine atoms bonded to antimony, two are terminal [Sb-Cl(3) 2.3875(8); $\mathrm{Sb}-\mathrm{Cl}(4)$ 2.3474(8) \AA], one is μ_{2}-bridging between Sb and $\mathrm{Cu}[\mathrm{Cl}(2)]$ and one is $\mu_{3}-$ bridging between two Sb atoms and one Cu atom [$\mathrm{Cl}(1)]$. The weakness of the association between the heterometal units is reflected in the very short $\mathrm{Sb}-\mathrm{Cl}(2)$ bond, which is very similar in length to the two terminal $\mathrm{Sb}-\mathrm{Cl}$ bonds; dimerization by $\mu_{2}-\mathrm{Cl}$ bridges between antimony centers is also weak $\left[\mathrm{Sb}-\mathrm{Cl}\left(1^{\prime}\right) 3.2106(6) \mathrm{Å}\right]$. The Cu - P distances are similar to those in $\mathbf{1}[2.2668(8), 2.2701(8) \AA$ Å].

In contrast, when an excess of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}$ is used in the reaction protocol, monomeric $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuCl} . \mathrm{SbCl}_{3}\right]$ (7) is obtained (Figure 7). Compound 7 can be viewed as a $\left[\mathrm{SbCl}_{4}\right]$ anion coordinated in a monodentate fashion to $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{Cu}\right]^{+}$via a $\mu_{2}-\mathrm{Cl}$ bridge. The $\mathrm{Cu}-\mathrm{Cl}$ bond $[2.4240(9)$ $\AA]$ is similar to those in $\mathbf{1}$ and $\mathbf{4}$ and elongated with respect to $\mathrm{Cu}-\mathrm{Cl}(1)$ in $\mathbf{6}$, whereas $\mathrm{Sb}-\mathrm{Cl}(1)$ shows some lengthening $[2.8005(9) \AA$ A $]$ with respect to the three terminal $\mathrm{Sb}-\mathrm{Cl}$ bonds [2.4473(10), 2.3549(11), 2.3474(10) \AA] as a result of its bridging role; the four halogens then are more closely linked to antimony than copper. In addition to the $\mu_{2}-\mathrm{Cl}$, tetrahedral coordination at copper is completed by three Cu-P bonds, each of which is longer [2.3402(10), 2.3532(9), $2.3244(10) \AA \AA$ than in the bis-triphenylphosphine complexes 1 and 4, plausibly due to the steric crowding at copper from the three bulky donors. However, what is most interesting about this monomeric species is the
role played by aromatic ring $\mathrm{C}(49)-\mathrm{C}(54)$, which sits below antimony [Sb-C 3.468(4)-3.811(4); Sb-ring centroid 3.3323 (3) \AA A in a manner analogous to that seen in

Figure 7 The asymmetric unit of 7 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level. Only the α-carbons of the phenyl rings are numbered for clarity, except in the case of the ring π-bonded to antimony. Hydrogen atoms and the solvent have also been omitted. Selected geometric data: Sb-Cl(1) 2.8005(9), Sb-Cl(2) 2.3549(11), Sb-Cl(3) 2.4473(10), Sb-Cl(4) 2.3474(10), Sb-midpoint C(49)-C(54) 3.3323(3), Cu-Cl(1) 2.4240(9), $\mathrm{Cu}-\mathrm{P}(1) 2.3402(10), \mathrm{Cu}-\mathrm{P}(2) 2.3532(9), \mathrm{Cu}-\mathrm{P}(3) 2.3244(10) \AA{ }^{\circ}$; $\mathrm{Cl}(1)-\mathrm{Sb}-$ $\mathrm{Cl}(2) 83.73(3), \mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(3) 171.25(4), \mathrm{Cl}(1)-\mathrm{Sb}-\mathrm{Cl}(4) 84.66(3), \mathrm{Cl}(2)-$ $\mathrm{Sb}-\mathrm{Cl}(3) 90.13(4), \mathrm{Cl}(2)-\mathrm{Sb}-\mathrm{Cl}(4) 96.45$ (4), $\mathrm{Cl}(3)-\mathrm{Sb}-\mathrm{Cl}(4) 89.87$ (4), $P(1)-C u-P(2) 118.32$ (3), $P(1)-C u-P(3) 116.47$ (4), $P(1)-C u-C l(1) 106.11(3)$, $\mathrm{P}(2)-\mathrm{Cu}-\mathrm{P}(3) 112.91$ (3), $\mathrm{P}(2)-\mathrm{Cu}-\mathrm{Cl}(1)$ 102.22(3), $\mathrm{P}(3)-\mathrm{Cu}-\mathrm{Cl}(1) 96.82(3)$, $\mathrm{Cu}-\mathrm{Cl}(1)-\mathrm{Sb} 131.71(4)^{\circ}$.
the tin complex 4, generating a five-coordinated squarepyramidal geometry at antimony, with apical $\mathrm{Cl}(4)$ trans to the vacant space presumably occupied by the lone pair on $\mathrm{Sb}(\mathrm{III})$. Interactions between aromatic rings and antimony - so-called Menshutkin complexes (Schmidbaur and Schier, 2008) - have been previously reported in the structures of, for example, $\mathrm{SbCl}_{3} \cdot \mathrm{Et}_{6} \mathrm{C}_{6}$ (Schmidbaur et al., 1987), $\mathrm{SbBr}_{3}-9,10$-dihydroanthracene (Schmidbaur et al., 1990a), (MesSb) $\cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (Ates et al., 1989), $\mathrm{SbCl}_{3} \cdot 1,4$-bis(2mercaptoethyl)benzene (Corinne et al., 2009) and a range of tethered diarenes (Burford et al., 1996) with widely differing Sb-ring centroid distances (ca. 2.9-3.8 Å) and arene hapticities (Schmidbaur and Schier, 2008). Furthermore, the π-interaction in η^{3}-(naphthalene). $\left(\mathrm{SbCl}_{3}\right)_{2}$ (Hulme and Szymanski, 1969) has been rationalized as donation of the π electrons of the arene ring into an empty orbital on antimony [originally described as an $s p^{3} d^{2}$ hydrid (Hulme and Szymanski, 1969) but most likely now to be seen as a σ^{\star} orbital], resulting in elongation of the $\mathrm{Sb}-\mathrm{Cl}$ bond trans to the aromatic ring. In general, the interactions between group 15 elements and arenes have been rationalized in terms of a donor-acceptor interaction in which the arene is the donor (Schmidbaur and Schier, 2008). There is no indication among the $\mathrm{C}-\mathrm{C}$ bonds of the $\mathrm{C}(49)-\mathrm{C}(54)$ ring in 7 [1.380(5)-1.400(5) \AA] of a π-arene interaction, although $\mathrm{C}(53)$, which sits diametrically opposite $\mathrm{Cl}(2)[\angle \mathrm{Cl}(2)-\mathrm{Sb} . .$. $\left.C(53) 176.7^{\circ}\right]$, is involved in the two shortest measured C-C distances, and it is notable that the $\mathrm{Sb}-\mathrm{Cl}(2)$ trans to the $\mathrm{C}(53)$ ring is the longest of the three terminal $\mathrm{Sb}-\mathrm{Cl}$ bonds by ca. $0.1 \AA$. Furthermore, the point at which antimony makes an orthogonal contact with the C(49)-C(54) ring is displaced $0.471 \AA$ away from the geometric center of the ring in the direction of $C(53)$, from which we surmise that any π-arene...Sb bonding is, at most, η^{3} in nature.

The reaction between SbCl_{3} and $\mathrm{Me}_{3} \mathrm{P}$ proved more difficult to elucidate. $\mathrm{SbCl}_{3}, \mathrm{CuCl}$ and $\mathrm{Me}_{3} \mathrm{P}$ (1:1:2) were heated to $60^{\circ} \mathrm{C}$ in toluene and left to cool slowly. Initially, the reaction yielded yellow crystals that were discovered to be twinned, so were redissolved at $100^{\circ} \mathrm{C}$ and cooled slowly to try to improve their quality. However, on cooling, a yellow precipitate remained with some colorless crystals on the side of the Schlenk flask which were structurally characterized as $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right]^{+}\left[\mathrm{HPMe}_{3}\right]_{2}+\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3-}(\mathbf{8})$, which appears to be a minor hydrolysis product (Figure 8). From a repeat reaction, another minor product was obtained and structurally characterized as $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]+\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]$ (9) (Figure 9) from a few colorless crystals found within the yellow product. Attempts to discover the nature of the major product in this reaction (the yellow precipitate) failed, as NMR could only confirm the presence of $\mathrm{Me}_{3} \mathrm{P}$ groups and microanalysis proved inconclusive.

Figure 8 The asymmetric unit of 8 showing the labeling scheme used. Thermal ellipsoids are at the 40% probability level. Hydrogen atoms, except for those involved in hydrogen bonding, have been omitted for clarity. For selected geometric data, see Table 1. Hydrogen bond data: $\mathrm{H}(3) \ldots \mathrm{Cl}(4) 2.80(4), \angle \mathrm{P}(3)-\mathrm{H}(3) \ldots \mathrm{Cl}(4) 112(2)$; $\mathrm{H}(4) \ldots \mathrm{Cl}(2) 2.72(5), \angle \mathrm{P}(4)-\mathrm{H}(4) \ldots \mathrm{Cl}(2) 157(3)^{\circ}$.

Compound 8 consists of a bimetallic $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9} \mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2}$ anion hydrogen-bonded to two $\left[\mathrm{Ph}_{3} \mathrm{PH}\right]^{+}$cations $[\mathrm{P}(3)-$ $\mathrm{H}(3) . . \mathrm{Cl}(4): 2.80(4) ; \mathrm{P}(4)-\mathrm{H}(4) \ldots \mathrm{Cl}(2): 2.72(5) \AA \mathrm{A}$. The

Table 1 Selected geometric data $\left({ }^{\circ},^{\circ}\right)$ for 8.

Bond lengths (\AA) ($)$			
$\mathrm{Sb}(1)-\mathrm{Cl}(1)$	$2.4441(10)$	$\mathrm{Sb}(2)-\mathrm{Cl}(6)$	$2.6163(11)$
$\mathrm{Sb}(1)-\mathrm{Cl}(2)$	$2.3741(11)$	$\mathrm{Sb}(2)-\mathrm{Cl}(7)$	$2.3893(10)$
$\mathrm{Sb}(1)-\mathrm{Cl}(3)$	$2.6327(10)$	$\mathrm{Sb}(2)-\mathrm{Cl}(8)$	$2.4196(11)$
$\mathrm{Sb}(1)-\mathrm{Cl}(4)$	$2.5907(10)$	$\mathrm{Sb}(2)-\mathrm{Cl}(9)$	$2.5890(11)$
$\mathrm{Sb}(1)-\mathrm{Cl}(5)$	$2.9692(10)$	$\mathrm{Sb}(2)-\mathrm{Cl}(3)$	$3.4951(11)$
		$\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$3.0897(10)$
$\mathrm{Cu}-\mathrm{Cl}(4)$	$2.5931(12)$	$\mathrm{Cu}-\mathrm{P}(1)$	$2.2391(12)$
$\mathrm{Cu}-\mathrm{Cl}(5)$	$2.3979(11)$	$\mathrm{Cu}-\mathrm{P}(2)$	$2.2337(12)$
$\mathrm{Bond} a n g l e s\left({ }^{\circ}\right)$			
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(2)$	$89.74(4)$	$\mathrm{Cl}(3)-\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$77.90(3)$
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(3)$	$92.10(3)$	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{Cl}(3)$	$76.56(3)$
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(4)$	$89.77(3)$	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$87.57(3)$
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(5)$	$169.86(3)$	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{Cl}(7)$	$88.91(4)$
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{Cl}(3)$	$87.29(4)$	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{Cl}(8)$	$88.41(4)$
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{Cl}(4)$	$87.24(4)$	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{Cl}(9)$	$175.97(4)$
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{Cl}(5)$	$83.88(4)$	$\mathrm{Cl}(7)-\mathrm{Sb}(2)-\mathrm{Cl}(3)$	$158.91(3)$
$\mathrm{Cl}(3)-\mathrm{Sb}(1)-\mathrm{Cl}(4)$	$174.21(4)$	$\mathrm{Cl}(7)-\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$86.41(3)$
$\mathrm{Cl}(3)-\mathrm{Sb}(1)-\mathrm{Cl}(5)$	$95.46(3)$	$\mathrm{Cl}(7)-\mathrm{Sb}(2)-\mathrm{Cl}(8)$	$93.02(4)$
$\mathrm{Cl}(4)-\mathrm{Sb}(1)-\mathrm{Cl}(5)$	$82.07(3)$	$\mathrm{Cl}(7)-\mathrm{Sb}(2)-\mathrm{Cl}(9)$	$88.22(4)$
$\mathrm{P}(1)-\mathrm{Cu}-\mathrm{P}(2)$	$122.80(4)$	$\mathrm{Cl}(8)-\mathrm{Sb}(2)-\mathrm{Cl}(3)$	$101.64(3)$
$\mathrm{P}(1)-\mathrm{Cu}-\mathrm{Cl}(4)$	$100.89(4)$	$\mathrm{Cl}(8)-\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$175.95(4)$
$\mathrm{P}(1)-\mathrm{Cu}-\mathrm{Cl}(5)$	$117.57(4)$	$\mathrm{Cl}(8)-\mathrm{Sb}(2)-\mathrm{Cl}(9)$	$88.91(4)$
$\mathrm{P}(2)-\mathrm{Cu-Cl}(4)$	$100.40(4)$	$\mathrm{Cl}(9)-\mathrm{Sb}(2)-\mathrm{Cl}(3)$	$106.96(3)$
$\mathrm{P}(2)-\mathrm{Cu}-\mathrm{Cl}(5)$	$112.92(4)$	$\mathrm{Cl}(9)-\mathrm{Sb}(2)-\mathrm{Cl}(5)$	$95.08(3)$
$\mathrm{Cl}(4)-\mathrm{Cu}-\mathrm{Cl}(5)$	$94.30(4)$	$\mathrm{Cu}-\mathrm{Cl}(5)-\mathrm{Sb}(1)$	$90.90(3)$
$\mathrm{Sb}(1)-\mathrm{Cl}(3)-\mathrm{Sb}(2)$	$82.96(3)$	$\mathrm{Cu}-\mathrm{Cl}(5)-\mathrm{Sb}(2)$	$129.28(4)$
$\mathrm{Sb}(1)-\mathrm{Cl}(4)-\mathrm{Cu}$	$90.90(3)$	$\mathrm{Sb}(1)-\mathrm{Cl}(5)-\mathrm{Sb}(2)$	$85.40(3)$

bimetallic anion is made up from $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3 \text { - }}$ coordinated to $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$in a k^{2}-chelating mode through two chlorine atoms attached to a common antimony $[\mathrm{Sb}(1)]$, each of which bridges dissimilar metals in a μ_{2}-bridging manner. Although a limited number of other examples of $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3-}$ have been structurally characterized (Ishihara et al., 1992; Willey et al., 1996; Wojtas and Jakubas, 2004; Gagor et al., 2008; Fu, 2010; Borisov et al., 2012), this is the first example of it acting as a ligand to coordinate another metal center. In 8, copper again adopts a distorted tetrahedral coordination, in which the bond to the bridging $\mathrm{Cl}(5)$ [2.3979(11) \AA] is shorter than that to the hydrogen-bonded $\mathrm{Cl}(4)$ [2.5931(12) \AA]; in addition, the $\mathrm{Cu}-\mathrm{PMe}_{3}$ bonds are the longest noted in this study [2.2391(12), 2.2337(12) Å]. The $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3}$ moiety in $\mathbf{8}$ is considerably distorted in comparison with other examples of this anion as a result of its coordination to copper. The sum of the van der Waals radii for antimony and chlorine (ca. $3.95 \AA$, given $\mathrm{Cl} 1.75, \mathrm{Sb} 2.20$ A) (Wells, 1984; Emsley, 1991) would allow for three $\mu_{2}-\mathrm{Cl}$ bridges between the two group 15 elements in $\mathbf{8}$, of which the bridge involving $\mathrm{Cl}(6)$ is notably longer [3.6159(12) \AA A] than those involving $\mathrm{Cl}(3)$ [3.4951(11) \AA] or $\mathrm{Cl}(5)$ [3.0897(10) \AA A]; for comparison, the terminal $\mathrm{Sb}-\mathrm{Cl}$ bonds lie in the range $2.3741(11)-2.5890(11) \AA$. In contrast, $\left[\mathrm{Me}_{3} \mathrm{PH}\right]_{3}^{+}$ $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3-}$ adopts five phases, the most symmetrical of which has three identical terminal $\mathrm{Sb}-\mathrm{Cl}$ bonds [2.421(4) \AA A and three identical bridging interactions [2.9098(3) Å], which become progressively more asymmetric [typically $\mathrm{Cl}_{\mathrm{t}}-\mathrm{Sb}$ and $\mathrm{Cl}_{b}-\mathrm{Sb}$, ca. 2.41-2.54 and 2.69-2.85 \AA] (Gagor et al., 2008), whereas when associated with protonated

1,4,7-trimethyl-1,4,7-triazacyclononane the ranges of $\mathrm{Sb}^{-\mathrm{Cl}} \mathrm{t}_{\mathrm{t}}$ [2.373(4)-2.509(4) \AA] and $\mathrm{Sb}-\mathrm{Cl}_{\mathrm{b}}[2.688(5)-3.532(5) \AA$ A $]$ are more similar to those in 8 (Willey et al., 1996). Taking all the above $\mathrm{Sb}-\mathrm{Cl}$ separations in $\mathbf{8}$ as bonds, the two antimony atoms adopt distorted octahedral geometries, with, in each case, one angle more open than expected to accommodate a lone electron pair $[\angle \mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(6)$ $115.48(3) ;$ [$\left.\angle \mathrm{Cl}(3)-\mathrm{Sb}(2)-\mathrm{Cl}(9) 106.96(3)^{\circ}\right]$.

Like 3, 9 contains the common $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}$cation, which requires no further discussion. Uniquely, however, it also embodies the $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]$ anion, for which there is no structural precedent (Figure 9), although the related $\left[\mathrm{Et}_{3} \mathrm{PH}\right]^{+}\left[\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Br}_{7}\right]$ has been characterized (Clegg et al., 1994b). The closest structural comparison is with $\left[\mathrm{Ph}_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]^{3}$, which has a similar arrangement to 9 but which incorporates anionic phenyl groups rather than neutral phosphine donors (Sheldrick and Martin, 1992). Compound 9 has two anion/cation pairs in the asymmetric unit, and although these are nominally the same as that in $\left[\mathrm{Ph}_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]^{3}$, that is, the non-halogen substituents are cis to each other with respect to the $\mathrm{Sb} . . . \mathrm{Sb}$ vector, all three anions are subtly different. $\left[\mathrm{Ph}_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]^{3}$ is the most regular, having just one $\mu_{2}-\mathrm{Cl}$ bridge between metals, with two very similar $\mathrm{Sb}-\mathrm{Cl}$ bonds [ca. $3.05 \AA$ §], and terminal $\mathrm{Sb}-\mathrm{Cl}(2.443-2.532 \AA)$ (two additional $\mathrm{Sb}-\mathrm{Cl}_{\mathrm{t}}$ at ca. $2.7 \AA$ are involved in hydrogen bonds to a $\left[\mathrm{Me}_{3} \mathrm{NH}\right]^{+}$counterion) (Sheldrick and Martin, 1992). In 9, the $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]$. anion based on $\mathrm{Sb}(1,2)$ also has only one $\mu_{2}-\mathrm{Cl}$ bridge, but this is far more substantial [Sb-Cl(4) 2.8635(10), 2.8582(12) \AA A]; the $\mathrm{Sb}-\mathrm{Cl}_{\mathrm{t}}$ lie in the range $2.4567(13)-2.6553(11) ~ \AA \AA$,

Figure 9 One of two [($\left.\left.\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}$cations in the asymmetric unit of 8 showing the labeling scheme used.
Thermal ellipsoids are at the 40% probability level. Hydrogen atoms have been omitted for clarity. For selected geometric data, see Table 2.

Table 2 Selected geometric data ($\AA{ }^{\circ},{ }^{\circ}$) for 9.

Bond lengths (Å)			
$\mathrm{Sb}(1)-\mathrm{Cl}(1)$	2.4732(12)	$\mathrm{Sb}(3)-\mathrm{Cl}(8)$	2.5150(12)
$\mathrm{Sb}(1)-\mathrm{Cl}(2)$	$2.5488(13)$	$\mathrm{Sb}(3)-\mathrm{Cl}(9)$	2.6178(13)
$\mathrm{Sb}(1)-\mathrm{Cl}(3)$	$2.6065(13)$	$\mathrm{Sb}(3)-\mathrm{Cl}(10)$	2.5682(13)
$\mathrm{Sb}(1)-\mathrm{Cl}(4)$	2.8635(10)	$\mathrm{Sb}(3)-\mathrm{Cl}(11)$	2.7738(11)
$\mathrm{Sb}(1)-\mathrm{Cl}(7)$	3.7856(14)	$\mathrm{Sb}(3)-\mathrm{Cl}(13)$	3.5269(12)
$\mathrm{Sb}(2)-\mathrm{Cl}(4)$	2.8582(12)	$\mathrm{Sb}(4)-\mathrm{Cl}(9)$	3.6194(14)
$\mathrm{Sb}(2)-\mathrm{Cl}(5)$	2.4567 (13)	$\mathrm{Sb}(4)-\mathrm{Cl}(11)$	3.0337(11)
$\mathrm{Sb}(2)-\mathrm{Cl}(6)$	2.6553(11)	$\mathrm{Sb}(4)-\mathrm{Cl}(12)$	2.4105(13)
$\mathrm{Sb}(2)-\mathrm{Cl}(7)$	2.5321(11)	$\mathrm{Sb}(4)-\mathrm{Cl}(13)$	$2.5944(12)$
$\mathrm{Sb}(1)-\mathrm{P}(9)$	$2.5835(11)$	$\mathrm{Sb}(4) \cdot \mathrm{Cl}(14)$	2.5955(13)
$\mathrm{Sb}(2)-\mathrm{P}(10)$	2.5807(11)	$\mathrm{Sb}(3) \cdot \mathrm{P}(11)$	2.5788(12)
		$\mathrm{Sb}(4)-\mathrm{P}(12)$	2.5855(11)
$\mathrm{Cu}(1)-\mathrm{P}(1)$	2.2651(12)	$\mathrm{Cu}(2)-\mathrm{P}(5)$	2.2680(11)
$\mathrm{Cu}(1)-\mathrm{P}(2)$	2.2723(12)	$\mathrm{Cu}(2)-\mathrm{P}(6)$	2.2652(11)
$\mathrm{Cu}(1)-\mathrm{P}(3)$	2.2722(13)	$\mathrm{Cu}(2) \cdot \mathrm{P}(7)$	2.2550(12)
$\mathrm{Cu}(1)-\mathrm{P}(4)$	2.285(7)	$\mathrm{Cu}(2) \cdot \mathrm{P}(8)$	2.2570(12)
Bond angles (${ }^{\circ}$)			
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(2)$	89.15(5)	$\mathrm{Cl}(4)-\mathrm{Sb}(2)-\mathrm{Cl}(5)$	171.71(4)
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(3)$	88.13(5)	$\mathrm{Cl}(4)-\mathrm{Sb}(2)-\mathrm{Cl}(6)$	90.97(3)
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(4)$	167.12(4)	$\mathrm{Cl}(4)-\mathrm{Sb}(2)-\mathrm{Cl}(7)$	87.57(4)
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{Cl}(7)$	125.86(3)	$\mathrm{Cl}(4)-\mathrm{Sb}(2)-\mathrm{P}(10)$	85.24(3)
$\mathrm{Cl}(1)-\mathrm{Sb}(1)-\mathrm{P}(9)$	89.44(4)	$\mathrm{Cl}(5)-\mathrm{Sb}(2)-\mathrm{Cl}(6)$	90.25(4)
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{Cl}(3)$	165.40(5)	$\mathrm{Cl}(5)-\mathrm{Sb}(2)-\mathrm{Cl}(7)$	89.45(5)
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{Cl}(4)$	86.05(4)	$\mathrm{Cl}(5)-\mathrm{Sb}(2)-\mathrm{P}(10)$	86.94(4)
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{Cl}(7)$	97.79(4)	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{Cl}(7)$	167.37(4)
$\mathrm{Cl}(2)-\mathrm{Sb}(1)-\mathrm{P}(9)$	85.52(4)	$\mathrm{Cl}(6)-\mathrm{Sb}(2)-\mathrm{P}(10)$	79.10(4)
$\mathrm{Cl}(3)-\mathrm{Sb}(1)-\mathrm{Cl}(4)$	93.52(4)	$\mathrm{Cl}(7)-\mathrm{Sb}(2)-\mathrm{P}(10)$	88.27(4)
$\mathrm{Cl}(3)-\mathrm{Sb}(1)-\mathrm{Cl}(7)$	95.43(4)	$\mathrm{Cl}(4)-\mathrm{Sb}(1)-\mathrm{P}(9)$	78.29(3)
$\mathrm{Cl}(3)-\mathrm{Sb}(1)-\mathrm{P}(9)$	80.11(4)	$\mathrm{Cl}(7)-\mathrm{Sb}(1)-\mathrm{P}(9)$	144.45(3)
$\mathrm{Cl}(4)-\mathrm{Sb}(1)-\mathrm{Cl}(7)$	66.73(3)	$\mathrm{Cl}(9)-\mathrm{Sb}(4)-\mathrm{Cl}(11)$	70.13(3)
$\mathrm{Cl}(8)-\mathrm{Sb}(3)-\mathrm{Cl}(9)$	87.27(5)	$\mathrm{Cl}(9)-\mathrm{Sb}(4)-\mathrm{Cl}(12)$	115.87(4)
$\mathrm{Cl}(8)-\mathrm{Sb}(3)-\mathrm{Cl}(10)$	88.97(5)	$\mathrm{Cl}(9)-\mathrm{Sb}(4)-\mathrm{Cl}(13)$	76.58(4)
$\mathrm{Cl}(8)-\mathrm{Sb}(3)-\mathrm{Cl}(11)$	169.26(4)	$\mathrm{Cl}(9)-\mathrm{Sb}(4)-\mathrm{Cl}(14)$	118.78(4)
$\mathrm{Cl}(8)-\mathrm{Sb}(3)-\mathrm{Cl}(13)$	117.02(4)	$\mathrm{Cl}(9)-\mathrm{Sb}(4)-\mathrm{P}(12)$	145.86(3)
$\mathrm{Cl}(8)-\mathrm{Sb}(3)-\mathrm{P}(11)$	88.84(4)	$\mathrm{Cl}(11)-\mathrm{Sb}(4)-\mathrm{Cl}(12)$	167.31(5)
$\mathrm{Cl}(9)-\mathrm{Sb}(3)-\mathrm{Cl}(10)$	164.79(5)	$\mathrm{Cl}(11)-\mathrm{Sb}(4)-\mathrm{Cl}(13)$	84.36(4)
$\mathrm{Cl}(9)-\mathrm{Sb}(3)-\mathrm{Cl}(11)$	91.15(4)	$\mathrm{Cl}(11)-\mathrm{Sb}(4)-\mathrm{Cl}(14)$	98.14(4)
$\mathrm{Cl}(9)-\mathrm{Sb}(3)-\mathrm{Cl}(13)$	78.06(4)	$\mathrm{Cl}(11)-\mathrm{Sb}(4) \cdot \mathrm{P}(12)$	79.11(3)
$\mathrm{Cl}(9)-\mathrm{Sb}(3)-\mathrm{P}(11)$	81.35(4)	$\mathrm{Cl}(12)-\mathrm{Sb}(4)-\mathrm{Cl}(13)$	86.29(5)
$\mathrm{Cl}(10)-\mathrm{Sb}(3)-\mathrm{Cl}(11)$	89.80(4)	$\mathrm{Cl}(12)-\mathrm{Sb}(4)-\mathrm{Cl}(14)$	88.66(5)
$\mathrm{Cl}(10)-\mathrm{Sb}(3)-\mathrm{Cl}(13)$	116.64(5)	$\mathrm{Cl}(12)-\mathrm{Sb}(4) \cdot \mathrm{P}(12)$	91.74(4)
$\mathrm{Cl}(10)-\mathrm{Sb}(3) \cdot \mathrm{P}(11)$	83.85(5)	$\mathrm{Cl}(13)-\mathrm{Sb}(4)-\mathrm{Cl}(14)$	164.43(4)
$\mathrm{Cl}(11)-\mathrm{Sb}(3)-\mathrm{Cl}(13)$	72.92(3)	$\mathrm{Cl}(13)-\mathrm{Sb}(4) \cdot \mathrm{P}(12)$	86.21(4)
$\mathrm{Cl}(11)-\mathrm{Sb}(3)-\mathrm{P}(11)$	80.42(4)	$\mathrm{Cl}(14) \cdot \mathrm{Sb}(4) \cdot \mathrm{P}(12)$	79.23(4)
$\mathrm{Cl}(13)-\mathrm{Sb}(3) \cdot \mathrm{P}(11)$	145.69(4)	$\mathrm{Sb}(3)-\mathrm{Cl}(11)-\mathrm{Sb}(4)$	91.54(3)
$\mathrm{Sb}(2)-\mathrm{Cl}(4)-\mathrm{Sb}(1)$	110.93(4)	$\mathrm{Sb}(4)-\mathrm{Cl}(13)-\mathrm{Sb}(3)$	84.29(3)
$\mathrm{Sb}(2)-\mathrm{Cl}(7)-\mathrm{Sb}(1)$	94.41(4)	$\mathrm{Sb}(3)-\mathrm{Cl}(9)-\mathrm{Sb}(4)$	82.10(3)

and both metals adopt a square pyramidal geometry ($\tau=$ $0.03,0.07)$. There is only one debatable long bond $[\mathrm{Sb}(1)-$ $\mathrm{Cl}(7) 3.7856(14) \AA$, , which must be weak as $\mathrm{Sb}(2)-\mathrm{Cl}(7)$ is relatively strong [2.5321(11) \AA], but if real would serve to raise the geometry at $\mathrm{Sb}(1)$ to octahedral. For the anion involving $\mathrm{Sb}(3,4)$ the arrangement is closer to that of $\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3-}$ seen in $\mathbf{8}$ in having three $\mu_{2}-\mathrm{Cl}$ bridges, each of
which has one short and one longer interaction $[\mathrm{Cl}(9)$: 2.6178(13)/3.6194(14); Cl(11): 2.7738(11)/3.0337(11); Cl(13): $2.5944(12) / 3.5269(12) \AA$]; of these, only those involving $\mathrm{Cl}(11)$ are comparable in symmetry to the $\mu_{2}-\mathrm{Cl}$ bridge in the other $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]^{-}$anion, although the $\mathrm{Sb}-\mathrm{Cl}_{t}$ are similar [2.4105(13)-2.5955(13) \AA]. If all the $\mu_{2}-\mathrm{Cl}$ bridges in this anion of 9 are considered valid interactions, then each antimony adopts a distorted octahedral geometry. Finally, it is notable that this is the only example coming from this study in which the phosphine has migrated from copper to the second metal center. $\mathrm{Sb}-\mathrm{P}$ bonds are relatively common, and examples embracing simple $\mathrm{R}_{3} \mathrm{P}-\mathrm{Sb}$ coordination include $\left[\left\{\left(\mathrm{Me}_{3} \mathrm{P}\right) \mathrm{Ph}_{2} \mathrm{Sb}_{4} \mathrm{X}\right]^{3+}\left[\mathrm{PF}_{6}\right]_{3}^{-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})\right.$ (Wielandt et al., 2006), $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{SbCl}_{2}\right]+\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{-}$(Chitnis et al., 2011), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{Ph}_{2} \mathrm{Sb}^{+}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}\right.$(Kilah et al., 2007) and $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{I}_{6}$ (Clegg et al., 1994a).

Conclusions

Novel heterobimetallic $\mathrm{M}-\mathrm{Cl}-\mathrm{M}^{\prime}$ adducts ($\mathrm{M}, \mathrm{M}^{\prime}=\mathrm{Cu}, \mathrm{Zn}$, Sn, Sb) have been prepared and structurally characterized. We have had no success in isolating clean products from the further nucleophilic substitution of Cl with, for example, $S R$, to generate $M-S(R)-M^{\prime}$ precursors for CVD, which suggests that under the reaction conditions employed the adducts fragment. However, this work has shown that $\mathrm{M}-\mathrm{X}-\mathrm{M}^{\prime}$ can be made, and we have had more success in generating such $\mathrm{M}-\mathrm{S}(\mathrm{R})-\mathrm{M}^{\prime}$ species by direct assembly from, for example, $\left[\mathrm{Zn}(\mathrm{SR})_{3}\right]^{-}$and $\left(\mathrm{R}_{3} \mathrm{P}\right)_{3} \mathrm{CuCl}$, details of which will form part of a separate report.

Experimental section

General procedures

All operations were performed under an atmosphere of dry argon using standard Schlenk line and glove box techniques. Toluene was dried using a commercially available solvent purification system (Innovative Technology Inc., MA, USA) and degassed under argon prior to use. Tetrahydrofuran (THF) was dried by refluxing over potassium before isolating by distillation and degassing under argon prior to use. Deuterated benzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ and deuterated chloroform (CDCl_{3}) NMR solvents were purchased from Fluorochem (Hadfield, UK), and dried by refluxing over potassium and over $4 \AA$ molecular sieves respectively, before isolating via vacuum distillation. All dry solvents were stored under argon in Young's ampoules over $4 \AA$ molecular sieves.

Melting points were determined utilizing a Stuart SMP10 Melting Point Apparatus (Bibby Scientific Ltd, Stone, UK). Elemental analyses were performed externally by London Metropolitan University Elemental Analysis Service, UK. Solution ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded with a Bruker Avance 300
spectrometer (Brüker, Coventry, UK) at ambient temperature $\left(25^{\circ} \mathrm{C}\right)$, save for the ${ }^{119} \mathrm{Sn}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 , which was recorded at 233 K on a Bruker Avance 400 spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are referenced internally to residual non-deuterated solvent resonances. All chemical shifts are reported in $\delta(\mathrm{ppm})$ and coupling constants in hertz. The following abbreviations are used: d (doublet), m (multiplet) and br (broad).

Synthesis of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}\right]_{2} \cdot \mathrm{ZnCl}_{2}(\mathbf{1}):\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}(1.00 \mathrm{~g}, 1.61$ $\mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.11 \mathrm{~g}, 0.80 \mathrm{mmol})$ were stirred together in toluene (50 mL) at $80^{\circ} \mathrm{C}$ for 4 h . After 4 h , all solids had dissolved. White crystals were obtained on slow cooling of the solution to room temperature ($0.97 \mathrm{~g}, 92 \%, \mathrm{mp} \mathrm{242-244}{ }^{\circ} \mathrm{C}$). Analysis, found (calc. for $\mathrm{C}_{72} \mathrm{H}_{60} \mathrm{P}_{4} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{Zn}$): C 62.9 (62.7), H 4.44 (4.39). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 7.04-7.86(\mathrm{~m}, \mathrm{Ph}),{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (ppm): $134.5(\mathrm{Ph}), 133.0(\mathrm{Ph}), 130.4(\mathrm{Ph}), 129.18(\mathrm{Ph}),{ }^{31} \mathrm{P}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}):-3.5$.

Synthesis of $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{P}\right) \mathrm{CuCl}\right]_{2} . \mathrm{ZnCl}_{2}\right\}_{n}$ (2): $\mathrm{Me}_{3} \mathrm{P}(0.50 \mathrm{~g}, 6.57 \mathrm{mmol})$, $\mathrm{CuCl}(0.32 \mathrm{~g}, 3.29 \mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.22 \mathrm{~g}, 1.64 \mathrm{mmol})$ were stirred together in toluene (50 mL) at $60^{\circ} \mathrm{C}$ for 1 h . After 1 h , all solids had dissolved. White crystals were obtained on slow cooling of the solution to room temperature ($0.42 \mathrm{~g}, 53 \%, \mathrm{mp} 120-124^{\circ} \mathrm{C}$). Analysis, found (calc. for $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{P}_{2} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{Zn}$): C 14.9 (15.0), H 3.62 (3.77). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 1.27(\mathrm{~d}, J=6.03 \mathrm{~Hz}, \mathrm{Me}),{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ (ppm): 15.2 (d, $J=19.9 \mathrm{~Hz}, \mathrm{Me}),{ }^{31} \mathrm{P}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}):-45.1$.

Also prepared using the same method was $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]+\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2}\right.$ $\left.\mathrm{Cu}(\mathrm{Cl})_{2} \mathrm{ZnCl}_{2}\right]^{-}$(3): Using $\mathrm{Me}_{3} \mathrm{P}(0.75 \mathrm{~g}, 9.86 \mathrm{mmol}), \mathrm{CuCl}(0.32 \mathrm{~g}, 3.29$ $\mathrm{mmol})$ and $\mathrm{ZnCl}_{2}(0.22 \mathrm{~g}, 1.64 \mathrm{mmol})$. White crystals were obtained on cooling the solution to $-20^{\circ} \mathrm{C}\left(0.73 \mathrm{~g}, 56 \%, \mathrm{mp} 74-75^{\circ} \mathrm{C}\right)$. Analysis, found (calc. for $\mathrm{C}_{18} \mathrm{H}_{54} \mathrm{P}_{6} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{Zn}$): C 26.5 (27.5), H 6.66 (6.92). ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}): 1.27(\mathrm{~d}, J=4.14 \mathrm{~Hz}, \mathrm{Me}),{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 15.4(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, \mathrm{Me}),{ }^{31} \mathrm{P}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ (ppm): -45.3

Synthesis of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}^{2} . \mathrm{SnCl}_{2}(4):\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}(0.50 \mathrm{~g}, 0.80$ $\mathrm{mmol})$ and $\mathrm{SnCl}_{2}(0.15 \mathrm{~g}, 0.80 \mathrm{mmol})$ were heated in toluene at $80^{\circ} \mathrm{C}$ for 4 h . Crystals were obtained on slow cooling of the solution to room temperature ($0.52 \mathrm{~g}, 79 \%$, mp 163-165 ${ }^{\circ} \mathrm{C}$). Analysis, found (calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{CuSn}$): C 53.3 (53.2), H 3.85 (3.72). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 7.13-7.46(\mathrm{~m}, \mathrm{Ph}){ }^{13} \mathrm{C} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}):$ 134.4 (d, $J=15.0 \mathrm{~Hz}, \mathrm{Ph}$), 132.1 (d, $J=31.0 \mathrm{~Hz}, \mathrm{Ph}), 130.9$ (s, Ph), 129.5 (d, J=9.3 Hz, Ph) ${ }^{31} \mathrm{P}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}):-0.29{ }^{119} \mathrm{Sn}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ (ppm): -67.6 (br).

Also prepared using the same method was $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{3} \mathrm{CuSnCl}_{3}(5)$: Using $\mathrm{Me}_{3} \mathrm{P}(0.50 \mathrm{~g}, 6.57 \mathrm{mmol}), \mathrm{CuCl}(0.32 \mathrm{~g}, 3.29 \mathrm{mmol})$ and SnCl_{2} ($0.62 \mathrm{~g}, 3.29 \mathrm{mmol}$) at $60^{\circ} \mathrm{C}$, yielding $0.75 \mathrm{~g}, 66 \%, \mathrm{mp} 205-207^{\circ} \mathrm{C}$. Crystals suitable for diffraction were obtained by heating the solution to $100^{\circ} \mathrm{C}$ and cooling slowly in an oil bath. Analysis, found (calc. for $\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{P}_{3} \mathrm{Cl}_{3} \mathrm{CuSn}$): C 20.8 (20.9), H 5.34 (5.27). ${ }^{1} \mathrm{H}$ NMR (300 MHz , THF- d_{8}) $\delta(\mathrm{ppm}): 1.36(\mathrm{~d}, J=4.90 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (300 MHz, THF-d8) δ (ppm): 17.2 (d, $J=18.6 \mathrm{~Hz}$), ${ }^{31} \mathrm{P}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta(\mathrm{ppm}):-40.9$, ${ }^{119}$ Sn NMR ($400 \mathrm{MHz}, 233 \mathrm{~K}, \mathrm{THF}-d^{8}$) δ (ppm): -273.0 (br).

Synthesis of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl} . \mathrm{SbCl}_{3}\right]_{2}(6):\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}(0.50 \mathrm{~g}, 0.80$ $\mathrm{mmol})$ and $\mathrm{SbCl}_{3}(0.18 \mathrm{~g}, 0.80 \mathrm{mmol})$ were stirred together in toluene $(50 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 4 h . After 4 h , all solids had dissolved. After cooling to room temperature the solvent was removed in vacuo and the remaining white solid was redissolved in THF. Slow evaporation gave colorless crystals ($0.61 \mathrm{~g}, 90 \%$, mp 174-175 ${ }^{\circ} \mathrm{C}$). Analysis, found (calc. for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2} \mathrm{Cl}_{4} \mathrm{CuSb}$): C 51.0 (51.0), H 3.68 (3.57). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}): 7.24-7.50(\mathrm{~m}, \mathrm{Ph}){ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}):$ 134.4 (d, J=13.6 Hz, Ph), 132.1 (d, J=32.9 Hz, Ph), 131.0 (s, Ph), 129.5 (d, $J=8.7 \mathrm{~Hz}, \mathrm{Ph}){ }^{31} \mathrm{P}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}):-0.7$.

Also prepared using the same method was $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{CuCl}_{2} \mathrm{SbCl}_{3}$ (7): $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuCl}(1.50 \mathrm{~g}, 2.40 \mathrm{mmol})$ and $\mathrm{SbCl}_{3}(0.18 \mathrm{~g}, 0.80 \mathrm{mmol})$ yielding $0.76 \mathrm{~g}, 86 \%, \mathrm{mp} 161-163^{\circ} \mathrm{C}$ on re-crystallization from toluene at $-20^{\circ} \mathrm{C}$. Analysis, found (calc. for $\mathrm{C}_{54} \mathrm{H}_{45} \mathrm{P}_{3} \mathrm{Cl}_{4} \mathrm{CuSb}$): C 58.3 (58.4), H 4.14 (4.09). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}): 7.10-7.42(\mathrm{~m}, \mathrm{Ph}){ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta(\mathrm{ppm}): 134.4$ (d, $\left.J=14.9 \mathrm{~Hz}, \mathrm{Ph}\right), 132.1(\mathrm{~d}, J=27.3 \mathrm{~Hz}$, Ph), 130.5 (d, $J=1.2 \mathrm{~Hz}, \mathrm{Ph}), 129.2$ (d, $J=9.3 \mathrm{~Hz}, \mathrm{Ph}){ }^{31} \mathrm{P}$ NMR (300 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm}):-2.4$.

Synthesis of $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Cu}\right]^{+}\left[\mathrm{HPMe}_{3}\right]_{2}+\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]^{3-}(8): \mathrm{Me}_{3} \mathrm{P}(1 \mathrm{~g}, 13.14$ $\mathrm{mmol}), \mathrm{CuCl}(0.64 \mathrm{~g}, 6.58 \mathrm{mmol})$ and $\mathrm{SbCl}_{3}(1.48 \mathrm{~g}, 6.58 \mathrm{mmol})$ were heated in toluene at $60^{\circ} \mathrm{C}$ for 1 h . Redissolving the yellow precipitate formed by heating to $100^{\circ} \mathrm{C}$ and leaving to cool slowly to room temperature produced a few colorless crystals, enough for X-ray crystallography, but no further analysis was carried out.

Also prepared using the same method was $\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{4} \mathrm{Cu}\right]^{+}\left[\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Sb}_{2} \mathrm{Cl}_{7}\right]^{-}(9):$ Using $\mathrm{Me}_{3} \mathrm{P}(1 \mathrm{~g}, 13.14 \mathrm{mmol}), \mathrm{CuCl}$ ($0.64 \mathrm{~g}, 6.58 \mathrm{mmol}$) and $\mathrm{SbCl}_{3}(1.48 \mathrm{~g}, 6.58 \mathrm{mmol})$. A few crystals suitable for diffraction were obtained by heating the solution to $100^{\circ} \mathrm{C}$ and cooling slowly in an oil bath, but no further analysis was carried out.

Crystallography

Experimental details relating to the single-crystal X-ray crystallographic studies are summarized in Table 3. For all structures, data were collected on a Nonius Kappa CCD diffractometer at 150(2) K using Mo- K_{α} radiation ($\lambda=0.71073 \AA$). Structure solution followed by full-matrix least squares refinement was performed using the WinGX1.70 suite of programs (Farrugia, 1999). Corrections for absorption (multiscan) were made in all cases.

Specific details: 1: The asymmetric unit consists of half a complete molecular entity, the remainder generated by a crystallographic twofold axis coincident with the zinc center. Additionally, there are four toluene entities present, two of which [C(41)-C(47), C(51)-C(57)] straddle crystallographic twofold rotation axes and are hence disordered about same. The third region of solvent presents as half a molecule of toluene [$\mathrm{C}(71)-\mathrm{C}(74)$], which is proximate to an inversion center. This necessarily means that the methyl group position is disordered over two places on the phenyl ring. This solvent fragment is further disordered with a proximate half-occupancy toluene [C(61)-C(67)]. The level of disorder in this latter region of the electron density map necessitated the inclusion of some geometric restraints in order to assist convergence). 4: Contains a molecule of lattice toluene. 5: Satisfactory structure determination and refinement could only be brokered once pseudo-merohedral twinning (36\%, about the 100 direct lattice direction) had been accounted for and the data were analyzed in space group $P 1$ with four independent molecules in the asymmetric unit; ADP restraints were applied to three carbon atoms to assist convergence and some B alerts remain in the final cifcheck. The composition of the final product has, however, been unambiguously determined. 7: The asymmetric unit includes 1.5 molecules of toluene. The toluene based on $\mathrm{C}(61)-\mathrm{C}(67)$ is located close to a center of inversion and therefore has an occupation factor of 50%; toluene $\mathrm{C}(71)-\mathrm{C}(77)$ is disordered in the ratio 1:1 and was isotropically refined, with a restraint applied to the $C(71)-C(77)$ distance. All solvent C_{6} phenyl rings were constrained to being ideal hexagons. 9: The $\mathrm{Me}_{3} \mathrm{P}$ moiety based on $\mathrm{P}(4)$ was seen to be disordered in a $70: 30$ ratio. P-C distances therein were refined subject to being similar, and some
Table 3 Crystallographic data for compounds 1-9.

	1	2	3	4	5	6	7	8	9
Chemical formula	$\mathrm{C}_{193} \mathrm{H}_{175} \mathrm{Cl}_{8} \mathrm{Cu}_{4} \mathrm{P}_{8} \mathrm{Zn}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{P}_{2} \mathrm{Zn}$	$\mathrm{C}_{18} \mathrm{H}_{54} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{P}_{6} \mathrm{Zn}$	$\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{Cl}_{3} \mathrm{CuP}_{2} \mathrm{Sn}$	$\mathrm{C}_{9} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{CuP}_{3} \mathrm{Sn}$	$\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{CuP}_{2} \mathrm{Sb}$	$\mathrm{C}_{129} \mathrm{H}_{114} \mathrm{Cl}_{8} \mathrm{Cu}_{2} \mathrm{P}_{6} \mathrm{Sb}_{2}$	$\mathrm{C}_{12} \mathrm{H}_{38} \mathrm{Cl}_{9} \mathrm{CuP}_{4} \mathrm{Sb}_{2}$	$\mathrm{C}_{36} \mathrm{H}_{108} \mathrm{Cl}_{14} \mathrm{Cu}_{2} \mathrm{P}_{12} \mathrm{Sb}_{4}$
Formula mass	3410.59	486.39	790.68	905.25	516.80	851.63	2504.20	932.39	2023.24
Crystal system	Monoclinic	Monoclinic	Triclinic	Orthorhombic	Triclinic	Triclinic	Monoclinic	Orthorhombic	Monoclinic
$a(A ̊)$	21.7997(4)	8.9728(2)	9.6824(2)	9.5878(1)	9.6870 (4)	10.9622(4)	12.8356(1)	9.2897(1)	14.9358(1)
b (Å)	26.1254(5)	11.4549(3)	9.8414(2)	14.1197(2)	15.2860(6)	$11.1033(4)$	33.3653(3)	16.9124(2)	14.3309(1)
$c(A ̊)$	15.1684(2)	16.5345(3)	19.7345(4)	29.3342(5)	15.3330(4)	14.7604(6)	13.8224(1)	21.5525(3)	19.6701(2)
$\alpha\left({ }^{\circ}\right)$			89.0275(14)		101.575(2)	80.493(2)			
$\beta\left({ }^{\circ}\right)$	102.863(1)	93.009(1)	83.5208(13)		106.412(2)	86.224(2)	95.532(1)		90.568(1)
$\gamma\left({ }^{\circ}\right.$			87.3021(13)		90.762(1)	80.047(2)			
Unit cell volume (${ }^{3}$)	8422.0(2)	1697.11(7)	1866.26(7)	3971.17(10)	2127.71(13)	1743.96(11)	5892.06(8)	3386.14(7)	4210.05(6)
Space group	C2/c	$P 2_{1} / n$	P-1	$P 2_{1} 2_{1} 2_{1}$	P1	P-1	$P 2_{1} / n$	$P 2{ }_{1} 2_{1}{ }_{1}$	$P 2_{1}$
z	2	4	2	4	4	2	2	4	2
$\mu\left(\mathrm{Mo}-\mathrm{k} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	1.032	4.674	2.318	1.477	2.759	1.808	1.121	3.110	2.458
Reflections measured	72180	29776	26811	42219	35070	31449	64765	60628	102699
Independent reflections	9600	4975	8496	9001	35086	7938	13280	7721	24569
$R_{\text {int }}$	0.0521	0.0619	0.0500	0.0844	0.0000	0.0861	0.0784	0.0618	0.0638
Final R_{1} values $[1>2 \sigma(l)]$	0.0323	0.0316	0.0338	0.0416	0.0762	0.0335	0.0479	0.0286	0.0391
Final $w R(F)$ values $[1>2 \sigma()$)	0.0714	0.0716	0.0726	0.0767	0.2101	0.0642	0.0940	0.0573	0.0736
Final R_{1} values (all data)	0.0552	0.0452	0.0547	0.0627	0.0947	0.0581	0.0986	0.0353	0.0680
Final $w R\left(F^{2}\right)$ values (all data)	0.0796	0.0772	0.0795	0.0844	0.2270	0.0721	0.1101	0.0599	0.0827
Goodness of fit on F^{2}	1.013	1.073	1.028	1.033	1.043	1.061	1.019	1.089	1.019
Flack parameter				-0.009(14)	0.15(2)			-0.017(13)	-0.020(8)
Largest diff. peak and hole (e \AA^{-3})	0.320, -0.319	0.613, -0.897	0.427, -0.597	0.997, -0.859	3.916, -2.433	0.741, -0.736	0.706, -0.753	0.741, -0.736	0.856, -1.257

ADP restraints were added to the fractional occupancy carbons to assist convergence.

Supporting information

Crystallographic data for the structural analysis (in CIF format) have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 970317-970325 for 1-9, respectively. Copies of this information may be obtained

References

Abermann, S. Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol. Energy 2013, 94, 37-70
Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J. Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[l,7-bis(n-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. 1984, 13, 1349-1356.
Ates, M.; Breunig, H. J.; Gulec, S.; Offermann, W.; Haberle, K.; Drager, M. Syntheses and structures of ethyl-, propyl-, butyl-, and mesitylantimony. Chem. Ber. 1989, 122, 473-478.
Bhattacharyya, K. X.; Akana, J. A.; Laitar, D. S.; Berlin, J. M.; Sadighi, J. P. Carbon-carbon bond formation on reaction of a copper(I) stannyl complex with carbon dioxide. Organometallics 2008, 27, 2682-2684.
Borisov, A. V.; Matsulevich, Zh. V.; Osmanov, V. K.; Borisova, G. N.; Mamedova, G. Z.; Magerramov, A. M.; Khrustalev, B. N. Sulfenyl halides in the synthesis of heterocycles. 4. Heterocyclization in reactions of alkenes with sulfenylating reagents based on di(2-pyridyl) disulfide. Chem. Heterocycl. Compd. 2012, 48, 1098-1104.
Burford, N.; Clyburne, J. A. C.; Wiles, J. A.; Cameron, T. S.; Robertson, K. N. Tethered diarenes as four-site donors to SbCl ${ }_{3}$. Organometallics 1996, 15, 361-364.
Chi, K.-M.; Farkas, J.; Hampden-Smith, M. J.; Kodas, T. T.; Duesler, E. N. The chemistry of copper(I) β-diketonate compounds. Part 4. Synthesis and characterization of $\mathrm{CuXI}_{n}\left(\mathrm{x}=\beta\right.$-diketonate or $\mathrm{Cl}, \mathrm{l}=\mathrm{PMe}_{3}, n=2$ or $\left.4 ; \mathrm{l}=\mathrm{PEt}_{3}, n=2\right)$. J. Chem. Soc., Dalton Trans. 1992, 21, 3111-3117.

Chino, K.; Koike, J.; Eguchi, S.; Araki, H.; Nakamura, R.; Jimbo, K. Katagiri, H. Preparation of $\mathrm{Cu}_{2} \mathrm{SnS}_{3}$ thin films by sulfurization of Cu/Sn stacked precursors. Jpn. J. Appl. Phys. 2012, 51, 10NC35/1.
Chitnis, S. S.; Peters, B.; Conrad, E.; Burford, N.; McDonald, R.; Ferguson, M. J. Structural diversity for phosphine complexes of stibenium and stibinidenium cations. Chem. Commun. 2011, 47, 12331-12333.
Clegg, W.; Elsegood, M. R. J.; Graham, V.; Norman, N. C.; Pickett, N. L.; Tavakkoli, K. Neutral phosphine complexes of antimony(III) and bismuth(III) halides. J. Chem. Soc., Dalton Trans. 1994a, 23, 1743-1751.
from the Director, CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +44-1233-336033; e-mail: deposit@ccdc. cam.ac.uk or www.ccdc.cam.ac.uk).

Acknowledgments: We thank the EPSRC for financial support through the PV21 Supergen program, and Stephen Boyer, London Metropolitan University, UK, for performing the microanalyses.

Received November 18, 2013; accepted January 20, 2014; previously published online March 10, 2014

Clegg, W.; Elsegood, M. R. J.; Norman, N. C.; Pickett, N. L. Anionic phosphine complexes of antimony(III) and bismuth(III) halogenoanions. J. Chem. Soc., Dalton Trans. 1994b, 23, 1753-1757.
Corinne, A. A.; Virginia, M. C.; Lev, N. Z.; Darren, W. J. Supramolecular organization using multiple secondary bonding interactions. Cryst. Growth Des. 2009, 9, 3011-3013.
Curtis, N. F.; Gladkikh, O. P. A copper(II) compound of a tetradentate amine imine ligand with coordinated tetrachlorozincate ion. Aust. J. Chem. 2000, 53, 597-600.
Dempsey, D. F.; Girolami, G. S. Copper(I) alkyls. Synthesis and characterization of tertiary phosphine adducts and the crystal structure of the dimethylcuprate complex $\left[\mathrm{Cu}\left(\mathrm{PMe}_{3}\right)_{4}\right]\left[\mathrm{CuMe}{ }_{2}\right]$. Organometallics 1988, 7, 1208-1213.
Dias, H. V. R.; Wang, X.; Diyabalanage, H. V. K. Fluorinated tris(pyrazolyl)borate ligands without the problematic hydride moiety: isolation of copper(I) ethylene and copper(I)-tin(II) complexes using $\left[\mathrm{MeB}\left(3-\left(\mathrm{CF}_{3}\right) \mathrm{pz}\right)_{3}\right]$. Inorg. Chem. 2005, 44, 7322-7324.
Dufton, J. T. R.; Walsh, A.; Panchmatia, P. M.; Peter, L. M.; Colombara, D.; Islam, M. S. Structural and electronic properties of CuSbS_{2} and CuBiS_{2} : potential absorber materials for thin-film solar cells. Phys. Chem. Chem. Phys. 2012, 14, 7229-7233.
Eichhöfer, A.; Fenske, D.; Holstein, W. New phosphido-bridging copper clusters. Angew. Chem., Int. Ed. 1993, 32, 242-245.
Emsley, J. The Elements, $2^{\text {nd }}$ Edition; Clarendon Press: Oxford, 1991.
Ennaoui, A.; Lux-Steiner, M.; Weber, A.; Abou-Ras, D.; Koetschau, I.; Schock, H. W.; Schurr, R.; Hoelzing, A.; Jost, S.; Hock, R.; et al. $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 2009, 517, 2511-2514.
Farrugia, L. J. Wingx: suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837-838.
Frank, W. Catena-(tetrakis(μ_{2}-chloro)-chloro-(η^{6}-p-toluene)-aluminium-tin(II)). Z. Anorg. Allg. Chem. 1990a, 585, 121.
Frank, W. Schwermetall- π-komplexe. III. Darstellung, eigenschaften und kristallstrukturen von α - und β-(toluolSnCl)(AlCl_{4}) sowie (mesitylenSnCl)(AlCl_{4}) zur abhängigkeit der aren-metallbindungsstärke von der arenbasizität. Z. Anorg. Allg. Chem. 1990b, 585, 121-141.

Frank, W. Schwermetall- π-komplexe, V. Das schichtenpolymer $\left\{\left(\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{SnCl}\right]\left[\mathrm{GaCl}_{4}\right]\right)_{2}\right\} \mathrm{x}$,y. Chem. Ber. 1990c, 123, 1233-1237.
Fu, X.-Q. Hexakis(4-acetylpyridinium) bis((c-chloro)-octachlorodiantimonate(III)). Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, 66, m736.
Gagor, A.; Wojtas, M.; Pietraszko, A.; Jakubas, R. Tris(trimethylphosphonium) (μ_{2}-chloro)-octachloro-diantimony(III). Acta Crystallogr., Sect. B: Struct. Sci. 2008, 64, 558-566.
Gardberg, A. S.; Ibers, J. A. trans-Bis(hexafluoroantimonato) (phthalocyaninato)copper(II). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 528-529.
Gladkikh, O. P.; Curtis, N. F.; Heath, S. L. μ-Chloro-1:2 $\kappa^{2} \mathrm{Cl}$-trichloro- $2 \kappa^{3} \mathrm{Cl}$-(2,4-dimethyl-5,8-diazadec-4-ene-2,10-diamine-1 $\left.\kappa^{4} N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}\right)$ copper(II)zinc(II). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1997, 53, 197-200.
Gou, S.-H.; Xu, Z.; You, X.-Z.; Zheng, P.-J.; Dong, J. Synthesis and crystal structure of a new polynuclear complex with a monomer of (3,4,9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane)copper(II)($\mu-\mathrm{C} 1)_{2}$ zinc(II) chloride Chin. J. Chem. 1992, 10, 232-236.
Guan, H.; Shen, H.; Gao, C.; He, X. Structural and optical properties of $\mathrm{Cu}_{2} \mathrm{SnS}_{3}$ and $\mathrm{Cu}_{3} \mathrm{SnS}_{4}$ thin films by successive ionic layer adsorption and reaction. J. Mater. Sci. - Mater. Electron. 2013, 24, 1490-1494.
Han, Y.-G.; Xu, C.; Duan, T.; Wu, F.-H.; Zhang, Q.-F.; Leung, W.-H. Heterometallic aggregates of copper(I) with metalloligand $\mathrm{Sn}(\mathrm{edt})_{2}$ (edt=ethane-1,2-dithiolate): syntheses and structures of $\left[\mathrm{Sn}(\mathrm{edt})_{2} \mathrm{Cl}(\mu-\mathrm{I})\left(\mu_{3}-\mathrm{I}\right)\left(\mathrm{CuPPh}_{3}\right)_{3}\right],\left[\mathrm{Sn}(\mathrm{edt})_{2}(\mu-\mathrm{Br})_{2}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{Br})_{2}\left(\mathrm{CuPPh}_{3}\right)_{4}\right]$, and $\left[\left\{\mathrm{Sn}(\mathrm{edt})_{2}\right\}_{3}(\mu-\mathrm{OH})_{3} \mathrm{Cu}_{5}\left(\mathrm{PPh}_{3}\right)_{8}\left[\mathrm{PF}_{6}\right]_{2}\right.$. Inorg. Chem. 2009, 48, 8796-8802.
Hulme, R.; Szymanski, J. T. The crystal structure of the 2:1 complex between antimony trichloride and naphthalene. Acta Crystallogr., Sect. B: Struct. Sci. 1969, B25, 753-761.
Ishihara, H.; Watanabe, K.; Iwata, A.; Yamada, K.; Kinoshita, Y.; Okuda, T.; Krishnan, V. G.; Dou, S.-Q.; Weiss, A. NQR and X-ray
 Br). Z. Naturforsch., A: Phys. Sci. 1992, 47, 65-74.
Ito, K. Nakazawa, T. Electrical and optical-properties of stannitetype quaternary semiconductor thin-films. Jpn. J. Appl. Phys. Part 1 1988, 27, 2094-2097.
Kilah, N. L.; Petrie, S.; Stranger, R.; Wielandt, J. W.; Willis, A. C.; Wild, S. B. Triphenylphosphine-stabilized diphenyl-arsenium, -stibenium, and -bismuthenium salts. Organometallics 2007, 26, 6106-6113.
Klett, J.; Klinkhammer, K. W.; Niemeyer, M. Ligand exchange between arylcopper compounds and bis(hypersilyl)tin or bis(hypersilyl)lead: synthesis and characterization of hypersilylcopper and a stannanediyl complex with a Cu-Sn bond. Chem. - Eur. J. 1999, 5, 2531-2536.
Kociok-Köhn, G.; Molloy, K. C; Sudlow, A. L. Molecular routes to $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$: a comparison of approaches to bulk and thin-film materials. Can. J. Chem. 2013, accepted for publication.
Koike, J.; Chino, K.; Aihara, N.; Araki, H.; Nakamura, R.; Jimbo, K.; Katagiri, H. $\mathrm{Cu}_{2} \mathrm{SnS}_{3}$ thin-film solar cells from electroplated precursors. Jpn. J. Appl. Phys. 2012, 51, 10NC34/1.
Kurihara, M.; Berg, D.; Fischer, J.; Siebentritt, S.; Dale, P. J. Kesterite absorber layer uniformity from electrodeposited precursors. Phys. Status Solidi C 2009, 6, 1241-1244.

Lazcano, Y. R.; Nair, M. T. S.; Nair, P. K. CuSbS 2 thin film formed through annealing chemically deposited $\mathrm{Sb}_{2} \mathrm{~S}_{3}-\mathrm{CuS}$ thin films. J. Cryst. Growth 2001, 223, 399-406.

Lefferts, J. L.; Hossain, M. B.; Molloy, K. C.; Helm, D. v. d.; Zuckerman, J. J. Bis(($\mu_{2}-0,0^{\prime}$-diphenyldithiophosphato-S,S, $\left.S^{\prime}\right)$ -(0,0'-diphenyldithiophosphato-S, S')-di-tin(II)). Angew. Chem., Int. Ed. 1980, 19, 309.
Mandal, S. K.; Thompson, L. K.; Gabe, E. J.; Charland, J.-P.; Lee, F. L. Binuclear complexes of the ligand 3,6-bis(2-pyridylthio) pyridazine involving homo- and heterodiatomic binuclear centers (Cu-Cu, Cu-Co, Cu-Zn). Crystal structure of bis[$\mu-3,6-$ bis(2-pyridylthio)pyridazine-N1, μ-N2, μ-N3, N4]((%5Cmu)-chloro)dicopper(II) triperchlorate-acetonitrile. Inorg. Chem. 1988, 27, 855-859.
Manolache, S.; Duta, A. The influence of the spray deposition parameters in the photovoltaic response of the threedimensional (3-D) solar cell: TCO/dense $\mathrm{TiO}_{2} / \mathrm{CuSbS}_{2} /$ graphite. J. Optoelectron. Adv. M. 2007, 9, 3219-3222.

Manolache, S.; Duta, A.; Isac, L.; Nanu, M.; Goossens, A. Schoonman, J. The influence of the precursor concentration on CuSbS_{2} thin films deposited from aqueous solutions. Thin Solid Films 2007, 515, 5957-5960.
Manson, J. L.; Schlueter, J. A.; Funk, K. A.; Southerland, H. I.; Twamley, B.; Lancaster, T.; Blundell, S. J.; Baker, P. J.; Pratt, F. L.; Singleton, J.; et al. Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of $\left[\mathrm{Cu}\left(\mathrm{HF}_{2}\right)(\text { pyrazine })_{2}\right] \mathrm{SbF}_{6}$, $\left[\mathrm{Cu}_{2} \mathrm{~F}(\mathrm{HF})\left(\mathrm{HF}_{2}\right)(\text { pyrazine })_{4}\right]\left(\mathrm{SbF}_{6}\right)_{2}$, and $\left[\mathrm{CuAg}\left(\mathrm{H}_{3} \mathrm{~F}_{4}\right)(\text { pyrazine })_{5}\right]$ (SbF $)_{2}$. J. Am. Chem. Soc. 2009, 131, 6733-6747.
Margulieux, K. R.; Sun, C.; Zakharov, L. N.; Holland, A. W.; Pak, J. J. Stepwise introduction of thiolates in copper-indium binuclear complexes. Inorg. Chem. 2010, 49, 3959-3961.
Martin, J. D.; Dattelbaum, A. M.; Thornton, T. A.; Sullivan, R. M.; Yang, J.; Peachey, M. T. Metal halide analogues of chalcogenides: a building block approach to the rational synthesis of. solid-state materials. Chem. Mater. 1998, 10, 2699-2713.
Moriya, K.; Watabe, J.; Tanaka, K. Uchiki, H. Characterization of $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ thin films prepared by photo-chemical deposition. Phys. Status Solidi C 2006, 3, 2848-2852.
Moriya, K.; Tanaka, K.; Uchiki, H. Fabrication of $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys 2007, 46, 5780-5781.
Nair, M. T. S.; Rodriguez-Lazcano, Y.; Pena, Y.; Messina, S.; Campos, J.; Nair, P. K. Absorber films of antimony chalcogenides via chemical deposition for photovoltaic application. Mater. Res. Soc. Symp. Proc. 2005, 836, 167-172.
Nakajima, Y.; Shiraishi, Y.; Tsuchimoto, T.; Ozawa, F. Synthesis and coordination behavior of Cul bis(phosphaethenyl)pyridine complexes. Chem. Commun. 2011, 47, 6332-6334.
Nakamura, Y.; Yonemura, M.; Arimura, K.; Usuki, N.; Ohba, M.; Okawa, H. Tetranuclear mixed-metal $\mathrm{M}_{2} \mathrm{Cu}^{\prime \prime}$ complexes derived from a phenol-based macrocyclic ligand having two N (amine) $)_{2} \mathrm{O}_{2}$ and two N (imine) O_{2} metal-binding sites. Inorg. Chem. 2001, 40, 3739-3744.
Nakayama, N.; Ito, K. Sprayed films of stannite $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$. Appl. Surf. Sci. 1996, 92, 171-175.
Nayek, H. P.; Massa, W.; Dehnen, S. A heterometallic, heterovalent $\mathrm{CuI} / \mathrm{SnII} / \mathrm{IV} / \mathrm{S}$ cluster with an unprecedented $\mathrm{Cu}_{4} \mathrm{Sn}$ core and stannacyclopentane units. Inorg. Chem. 2008, 47, 9146-9148.
Park, J.; Song, M.; Jung, W. M.; Lee, W. Y.; Kim, H.; Kim, Y.; Hwang, C.; Shim, I.-W. Syntheses of $\mathrm{Cu}_{2} \mathrm{SnS}_{3}$ and $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$
nanoparticles with tunable $\mathrm{Zn} / \mathrm{Sn}$ ratios under multibubble sonoluminescence conditions. Dalton Trans. 2013, 42, 10545-10550.
Pätow, R.; Fenske, D. Synthesen und kristallstrukturen von Cu- und Ag-komplexen mit $\left[\mathrm{Ta}_{6} \mathrm{~S}_{17}\right]^{4}$-ionen als liganden. Z. Anorg. Allg. Chem. 2002, 628, 2790-2794.
Prins, R.; Biagini-Cingi, M.; Drillon, M.; de Graaf, R. A. G.; Haasnoot, J.; Manotti-Lanfredi, A.-M.; Rabu, P.; Reedijk, J.; Ugozzoli, F. Trinuclear copper(II) coordination compounds with the new ligand 1,9-bis-(3-amino-4H-1,2,4-triazol-5-yl)-3,7dithianonane; X-ray structures and magnetochemistry Inorg. Chim. Acta 1996, 248, 35-44.
Probst, T.; Steigelmann, O.; Riede, J.; Schmidbaur, H. Ge(II) and Sn (II) complexes of [2.2.2] paracyclophane with threefold internal η^{6} coordination. Angew. Chem., Int. Ed. 1990, 29, 1397-1398.
Pryma, O. V.; Petrusenko, S. R.; Kokozay, V. N.; Skelton, B. W.; Shishkin, O. V.; Teplytska, T. S. A facile direct synthesis of bimetallic $\mathrm{Cu}(I I) \mathrm{Zn}(\mathrm{II})$ complexes with ethylenediamine revealing different types of chain crystal structures Eur. J. Inorg. Chem. 2003, 1426-1432.
Ramasamy, K.; Malik, M. A.; O’Brien, P. The chemical vapour deposition of $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ thin films. Chem. Sci. 2012, 48, 5703.
Rodesiler, P. F.; Auel, T.; Amma, E. L. Metal ion-aromatic complexes. XXII. Preparation, structure, and stereochemistry of tin(II) in π-benzenetin di(tetrachloroaluminate)-benzene. J. Am. Chem. Soc. 1975, 97, 7405-7410.
Schafer, A.; Winter, F.; Saak, W.; Haase, D.; Pottgen, R.; Muller, T. Stannylium ions, a tin(II) arene complex, and a tin dication stabilized by weakly coordinating anions. Chem.-Eur. J. 2011, 17, 10979-10984.
Schmidbaur, H.; Schier, A. π-Complexation of post-transition metals by neutral aromatic hydrocarbons: the road from observations in the 19th century to new aspects of supramolecular chemistry. Organometallics 2008, 27, 2361-2395.
Schmidbaur, H.; Nowak, R.; Huber, B.; Mueller, G. Hexaeth-ylbenzene-trichloroantimony: a Menshutkin complex with a centroid antimony-arene coordination. Organometallics 1987, 6, 2266-2267.
Schmidbaur, H.; Probst, T.; Huber, B.; Muller, G.; Kruger, C. Aromaten-komplexe der p-block-elemente: eine tetramere η^{6}-koordinationsverbindung des hexamethylbenzols mit $\mathrm{Sn}\left(\mathrm{AlCl}_{4}\right) \mathrm{Cl}$ und kristall-chlorbenzol. J. Organomet. Chem. 1989a, 365, 53-60.
Schmidbaur, H.; Probst, T.; Huber, B.; Steigelmann, O.; Muller, G. Arene complexes of p-block elements: $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)\right]_{2}$. The first bis(arene) coordination compound of a group 14 element. Organometallics 1989b, 8, 1567-1569.
Schmidbaur, H.; Probst, T.; Steigelmann, O.; Muller. π-Complexes of p-block elements: $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}\right]_{2} \cdot 3 \mathrm{C}_{6} \mathrm{H}_{6}$ - a dimeric coordination compound of hexamethylbenzene with $\mathrm{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}$. Z. Naturforsch., B: Chem. Sci. 1989c, 44, 1175.

Schmidbaur, H.; Nowak, R.; Steigelmann, O.; Muller, G. π-Complexes of p-block elements: planar dihydroanthracene in a Menshutkin complex. Crystal structure of $\mathrm{Br}_{3} \mathrm{Sb} \cdot \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{SbBr}_{3}$. Chem. Ber. 1990a, 123, 19-22.
Schmidbaur, H.; Probst, T.; Steigelmann, O.; Muller, G. π-Complexes of p-block elements: (η^{6}-mesitylene)tin(II) chloride tetrachloroaluminate(III), a coordination polymer. Heteroat. Chem. 1990b, 1, 161-165.

Schmidbaur, H.; Probst, T.; Steigelmann, O. A triptycene complex of tin(II): $\left[\left(\mathrm{C}_{20} \mathrm{H}_{14}\right) \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)\right]_{2}$. Organometallics 1991, 10, 3176-3179.
Schneider, S.; Dzudza, A.; Raudaschl-Sieber, G.; Marks, T. J. Copper(I) tert-butylthiolato clusters as single-source precursors for high-quality chalcocite thin films: precursor chemistry in solution and the solid state. Chem. Mater. 2007, 19, 2768-3779.
Sheldrick, W. S.; Martin, C. Preparation and crystal-structures of chlorophenylantimonates(III) and bromophenylantimonates(III) $\left[\mathrm{Ph}_{2} \mathrm{SbX}_{2}\right]$ and $\left[\mathrm{Ph}_{2} \mathrm{Sb}_{2} \mathrm{X}_{7}\right]^{3-}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$. Z. Naturforsch., B: Chem. Sci. 1992, 47, 919-924.
Shevchenko, D. V.; Petrusenko, S. R.; Kokozay, V. N.; Zhigalko, M. V.; Zubatyuk, R. I.; Shishkin, O. V.; Skelton, B. W.; Raithby, P. R. Heterobimetallic $\mathrm{M} / \mathrm{Zn}(\mathrm{M}=\mathrm{Cu}, \mathrm{Ni})$ complexes with open-chain N - and N, O-ligands: template synthesis from metal powders and supramolecular crystal structures. Inorg. Chim. Acta 2005, 358, 3889-3904.
Su, Z.; Sun, K.; Han, Z.; Liu, F.; Lai, Y.; Li, J.; Liu, Y. Fabrication of ternary Cu-Sn-S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method. J. Mater. Chem. A 2012, 22, 16346-16352.
Tanaka, T.; Kawasaki, D.; Nishio, M.; Guo, Q.; Ogawa, H. Fabrication of $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ thin films by co-evaporation. Phys. Status Solidi C 2006, 3, 2844-2847.
Temple, D. J.; Kehoe, A. B.; Allen, J. P.; Watson, G. W.; Scanlon, D. O. Geometry, electronic structure, and bonding in $\mathrm{CuMCh}_{2}(M=\mathrm{Sb}$, $\mathrm{Bi} ; \mathrm{Ch}=\mathrm{S}, \mathrm{Se}$): alternative solar cell absorber materials? J. Phys. Chem. C 2012, 116, 7334-7340.
Veith, M.; Godicke, B. Huch, V. Darstellung und strukturen von chlorostannaten(II). II. Neue chlorostannate(II) von zweiwertigen kationen. Z. Anorg. Allg. Chem. 1989, 579, 87.
Wang, W.; Shen, H.; Li, J. Rapid synthesis of hollow CTS nanoparticles using microwave irradiation. Mater. Lett. 2013, 111, 5-8.
Weininger, M. S.; Rodesiler, P. F.; Amma, E. L. Metal ion-aromatic complexes. 24. Synthesis and crystal structure of chloro(π-aryl) tin(II) tetrachloroaluminate containing the $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$ moiety. Inorg. Chem. 1979, 18, 751-755.
Wells, A F. Structural Inorganic Chemistry; $5^{\text {th }}$ Edition. Clarendon Press: Oxford, 1984, pp.10-24.
Wielandt, J. W.; Kilah, N. L.; Willis, A. C.; Wild, S. B. Self-assembly. of square-planar halide complexes of phosphine-stabilised. stibenium salts. Chem. Commun. 2006, 42, 3679-3680.
Willey, G. R.; Daly, L. T.; Meehan, P. R.; Drew, M. G. B. Controlled hydrolysis reactions of the group 15 element-azamacrocyclic complexes $\mathrm{MCl}_{3} \mathrm{~L}(\mathrm{M}=\mathrm{As}, \mathrm{Sb}$ or $\mathrm{Bi} ; \mathrm{L}=1,4,7$-trimethyl-1,4,7-triazacyclononane). Formation and crystal structures of $\left[\mathrm{AsCl}_{2} \mathrm{~L}\right]\left[\mathrm{As}_{2} \mathrm{OCl}_{5}\right],\left[\mathrm{H}_{2} \mathrm{~L}\right] 2\left[\mathrm{Sb}_{2} \mathrm{OCl}_{6}\right] \mathrm{Cl}_{2},[\mathrm{HL}] \mathrm{L}$ and $\left[\mathrm{H}_{2} \mathrm{~L}_{2}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]\right.$ $\mathrm{Cl} \cdot \mathrm{MeCN} \cdot \mathrm{H}_{2} \mathrm{O}$. J. Chem. Soc., Dalton Trans. 1996, 26, 4045-4053.
Wojtas, M.; Jakubas, R. Structure and properties of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{P}_{3}\left[\mathrm{Sb}_{2} \mathrm{Cl}_{9}\right]\right.$ and $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{P}_{3}\left[\mathrm{Bi}_{2} \mathrm{Cl}_{9}\right]\right.$. J. Phys.: Condens. Matter 2004, 16, 7521.
Yeh, M. Y.; Lee, C. C.; Wuu, D. S. Influences of synthesizing temperatures on the properties of $\mathrm{Cu}_{2} \mathrm{ZnSnS}_{4}$ prepared by sol-gel spin-coated deposition. J. Sol-Gel Sci. Technol. 2009, 52, 65-68.
Zang, Y.; Yin, Z.; Wang, G.; Zeng, C.; Dai, A.; Zhou, Z. Crystal structure and magnetic properties of a novel hetero tetranuclear zinc-copper-copper-zinc complex. Inorg. Chem. 1990, 29, 560-563. $\left.\left\{\left(\mathrm{Me}_{3} \mathrm{P}\right) \mathrm{CuCl}\right]_{2} \cdot \mathrm{ZnCl}_{2}\right\}_{n}$

[^0]: *Corresponding authors: Mary F. Mahon, (for crystallographic correspondence), Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK, e-mail: m.f.mahon@bath.ac.uk; and Kieran C. Molloy, (for general correspondence), Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK, e-mail: k.c.molloy@bath.ac.uk,
 Gabriele Kociok-Köhn and Anna L. Sudlow: Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

