80 research outputs found

    The insertion domain 1 of class IIA dimeric glycyl-tRNA synthetase is a rubredoxin-like zinc ribbon

    Get PDF
    AbstractThe insertion domain 1 (ID1) of class IIA dimeric glycyl-tRNA synthetase (α2GRS) is an appended domain in the core catalytic region of the enzyme. ID1 has been shown to play a role in tRNA aminoacylation, mediating interaction with the acceptor arm of tRNA and diadenosine tetraphosphate (Ap4A) synthesis. Mutations in α2GRS, including those in the ID1 region, have been implicated in distal hereditary motor neuropathy-V (dHMN-V) and Charcot–Marie–Tooth (CMT) disease. Through sequence and structure based evolutionary analysis, we show that ID1 of α2GRS is a rubredoxin-like zinc ribbon domain. The zinc-chelating cysteines of ID1 are well conserved in all archaeal versions of the enzyme and also in several eukaryotes, which most likely have acquired them via horizontal gene transfer from bacteria; but in all other eukaryotes, the zinc-chelating residues are not preserved. ID1 from bacteria display a selective preservation of zinc-binding residues, ranging from complete conservation to complete loss. The ID1 from different organisms harbor variable-sized non-conserved insertions between the two zinc-binding half-sites of the zinc ribbon. Three of the previously identified CMT-associated mutations in α2GRS, viz., human D146N, mouse C157R and human S211F, are located in the zinc ribbon region of ID1. Interestingly, human Asp146 which is implicated in the synthesis of Ap4A, a molecule known to act during neuronal transmission, has also been reported to be mutated in dHMN-V, suggesting a possible link between hereditary motor neuropathy and Ap4A synthesis

    Genome sequencing and annotation of Acinetobacter guillouiae strain MSP 4-18

    Get PDF
    AbstractThe genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report the 4.8Mb genome of Acinetobacter guillouiae MSP 4-18, isolated from a mangrove soil sample from Parangipettai (11°30′N, 79°47′E), Tamil Nadu, India. The draft genome of A. guillouiae MSP 4-18 has a G+C content of 38.0% and includes 3 rRNA genes (5S, 23S, 16S) and 69 aminoacyl-tRNA synthetase genes

    Genome sequencing and annotation of Acinetobacter gyllenbergii strain MTCC 11365T

    Get PDF
    AbstractThe genus Acinetobacter consists of 31 validly published species ubiquitously distributed in nature and primarily associated with nosocomial infection. We report 4.3Mb genome of the Acinetobacter gyllenbergii strain MTCC 11365T. The draft genome of A. gyllenbergii has a G+C content of 41.0% and includes 3 rRNA genes (5S, 23S, 16S) and 67 aminoacyl-tRNA synthetase genes

    Evidence of a new metabolic capacity in an emerging diarrheal pathogen: lessons from the draft genomes of Vibrio fluvialis strains PG41 and I21563

    Get PDF
    BACKGROUND: Vibrio fluvialis is an emerging diarrheal pathogen for which no genome is currently available. In this work, draft genomes of two closely related clinical strains PG41 and I21563 have been explored. RESULTS: V. fluvialis strains PG41 and I21563 were sequenced on the Illumina HiSeq 1000 platform to obtain draft genomes of 5.3 Mbp and 4.4 Mbp respectively. Our genome data reveal the presence of genes involved in ethanolamine utilization, which is further experimentally confirmed by growth analysis. CONCLUSIONS: Combined in silico and growth analysis establish a new metabolic capacity of V. fluvialis to harvest energy from ethanolamine

    Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia

    Get PDF
    Mesenchymal niche cells may drive tissue failure and malignant transformation in the hematopoietic system but the molecular mechanisms and their relevance to human disease remain poorly defined. Here, we show that perturbation of mesenchymal cells in a mouse model of the preleukemic disorder Shwachman-Diamond syndrome induces mitochondrial dysfunction, oxidative stress and activation of DNA damage responses in hematopoietic stem and progenitor cells. Massive parallel RNA sequencing of highly purified mesenchymal cells in the mouse model and a range of human preleukemic syndromes identified p53-S100A8/9-TLR inflammatory signaling as a common driving mechanism of genotoxic stress. Transcriptional activation of this signaling axis in the mesenchymal niche predicted leukemic evolution and progression-free survival in myelodysplastic syndrome, the principal leukemia predisposition syndrome. Collectively, our findings reveal a concept of mesenchymal niche-induced genotoxic stress in heterotypic stem and progenitor cells through inflammatory signaling as an actionable determinant of disease outcome in human preleukemia

    Parameter Estimation of Single Phase Core Type Transformer Using Bacterial Foraging Algorithm

    No full text

    Genome sequencing and annotation of Amycolatopsis azurea DSM 43854T

    Get PDF
    We report the 9.2 Mb genome of the azureomycin A and B antibiotic producing strain Amycolatopsis azurea isolated from a Japanese soil sample. The draft genome of strain DSM 43854T consists of 9,223,451 bp with a G + C content of 69.0% and the genome contains 3 rRNA genes (5S–23S–16S) and 58 aminoacyl-tRNA synthetase genes. The homology searches revealed that the PKS gene clusters are supposed to be responsible for the biosynthesis of naptomycin, macbecin, rifamycin, mitomycin, maduropeptin enediyne, neocarzinostatin enediyne, C-1027 enediyne, calicheamicin enediyne, landomycin, simocyclinone, medermycin, granaticin, polyketomycin, teicoplanin, balhimycin, vancomycin, staurosporine, rubradirin and complestatin

    Complete Genome Sequence and Comparative Genomics of a Novel Myxobacterium Myxococcus hansupus.

    No full text
    Myxobacteria, a group of Gram-negative aerobes, belong to the class δ-proteobacteria and order Myxococcales. Unlike anaerobic δ-proteobacteria, they exhibit several unusual physiogenomic properties like gliding motility, desiccation-resistant myxospores and large genomes with high coding density. Here we report a 9.5 Mbp complete genome of Myxococcus hansupus that encodes 7,753 proteins. Phylogenomic and genome-genome distance based analysis suggest that Myxococcus hansupus is a novel member of the genus Myxococcus. Comparative genome analysis with other members of the genus Myxococcus was performed to explore their genome diversity. The variation in number of unique proteins observed across different species is suggestive of diversity at the genus level while the overrepresentation of several Pfam families indicates the extent and mode of genome expansion as compared to non-Myxococcales δ-proteobacteria
    • …
    corecore