386 research outputs found

    Practices of caring for nursing students : a clinical learning environment

    Get PDF
    Abstract: Objective: The purpose of this study was to explore, describe and illuminate nursing students’ best encounters of caring in the clinical learning environment. Caring for nursing students was emphasized and recommendations provided to enhance caring for nursing students within their clinical learning environment. Methods: Qualitative data was collected by the researcher using semi-structured individual interviews and an Appreciative Inquiry (AI) methodology. Ten second year nursing students undertaking the bridging course leading to registration as general nurses in terms of Regulation 683 of the South African Nursing Council (SANC) were purposively sampled from 3 private hospitals within the Western Cape. Data was analysed using Giorgi’s method. Results: The main theme included the best and ‘least best’ caring practices embedded in the centrality of the heart. The subthemes comprised of the nursing students’ experiences of caring literacy and caring illiteracy. The second theme included the creation of best caring practices within a conducive clinical learning environment. Within this theme, the subthemes comprised of the caring attributes required in reflecting best caring practices, as well the creation of a clinical learning environment to optimise caring. Conclusions: The significance and necessity of caring for the nursing student were clearly illustrated and confirmed by participants. Caring was equated to the heart as the core to the nursing students’ being. Recommendations for nursing education, management, practice and research were therefore specifically formulated to enhance caring towards nursing students

    THEORETICAL MODEL VALIDATION OF MUSCLE FORCES DURING EXTREME MOVEMENTS

    Get PDF
    Introduction: The validation of the involved muscular forces for a computer model of the human body, which allows simulation of internal forces in patients, was achieved by inverse-dynamic analysis. Methods: Beginning with an extreme vertical jump, joint moments were extracted from high-speed film data and eventually subdivided into muscular forces. The muscle groups responsible for movements were determined by electromyography. A squat jump with both legs and maximum strength was filmed in the sagittal plane with a frequency of 200 Hz. Moments in the hip, knee and ankle joints were determined from the film data. Using surface electrodes of a Neuraxon Myosoft 2008 system and an amplifier system from Multichannel Systems, the muscle groups responsible for movements were electromyographically determined. The muscle insertions and muscle paths were extracted from MRI pictures of patients. Results: With this information joint moments can be subdivided into single muscle forces. Depending on the jump demands, the muscle groups responsible for movements can be divided and analyzed in six extensor groups. Conclusion: Inverse-dynamic muscle force analysis is a basis which can be expanded for the validation of complex movements under extreme internal loads in patients

    FORWARD DYNAMICS FOR THE EVALUATION OF PRACTICAL PROBLEMS IN SPORTS

    Get PDF
    INTRODUCTION: In athletic movements there are often situations where one cannot rate varying executions, because the effects of single actions are unknown. At a tennis stroke for example, the movement of the ball after hitting is well visible as an effect of the action. However, the conditions at hitting the ball and the actions that lead to the torque of hitting are not reliably visible. Their interpretation is only subjective. Nevertheless, the trainer and the player have to give statements of the muscular activity like "hold the racket loosely or firmly "or"relax or stiffen your wrist." This paper focuses on a controversial problem: the use of the wrist in tennis. Some favor a firm wrist, others an actively moving wrist. The group which favors the active wrist based their idea on the higher velocities of the racket head. For this idea biomechanical considerations are only based on kinematic data and on analysis in muscular physiology (see KLEINÖDER 1997, ELLIOT 1991, HUIJING 1994, KOMI 1994) and not on kinetic analysis. With this work we try to fill these gaps with computer simulation. In a similar way we worked on a problem in gymnastics: the increase of swings on the horizontal bar, which is necessary for all swing elements. Little work has been done in this area (see BAUER 1976, BÖHM1997 and WIEMANN 1993). Nevertheless, the research that allows a development of a general theory of the swing increase is lacking (except for the efforts of WIEMANN). The goal of this paper is to show that computer simulation can be a first step towards the development of such a theory

    INTERNAL LOAD ESTIMATION FOR CLINICAL PROGNOSIS

    Get PDF
    Introduction: In therapy and rehabilitation it is important to know the ranges of the expected loads in the human body resulting from different movements. Because of the difficulty of measuring experimental dynamic loads (hip loads, Bergmann, Taylor), the loads created under these dynamic conditions are estimated by theoretical models and computer simulation. The method will be presented considering a squat jump. Methods: A squat jump performed with both legs, maximum strength and without counter-movement was modeled by a two-dimensional multi-body system with four segments. The movement-generating muscles were implemented taking into account the muscle insertions and paths, as well as Hill’s force-velocity-relation. The data were extracted from MR images and the literature. The muscles were excited by Hatze’s stimulation model. To obtain maximal jump height, the muscles were excited coordinately by optimization algorithms. Results: In the case of a vertical jump, the loads reached maximum values of 4250 N, 4750 N and 4800 N in hip, knee and ankle joints, respectively. The mean values of the hip, knee and ankle joint loads were 3100 N, 3650 N and 2600 N, respectively. Comparing the calculated values with those of Bassey et al. (1997), who measured the hip load during a fast jump, a good agreement of the load values was found. Conclusion: With this vertical jump it was proved that an estimation of joint loads is possible. A multitude of movements can be examined with this model in order to compile data for a joint load database which can be used for clinical prognosis. References: Bassey, E.J., Littlewood, J.J., Taylor, S.J.G. (1997). Relations Between Compressive Axial Forces in an Instrumented Massive Femoral Implant, Ground Reaction Forces, and Integrated Electromyographs From Vastus Lateralis During Various Ostogenic Exercies. J. Biomechanics 30, 213-223. Bergmann, G., Graichen, F., Rohlmann, A. (1993). Hip Joint Loading During Walking and Running, Measured in Two Patients. J. Biomechanics 26, 969-990

    The Flow Country Peatlands of Scotland: Foreword

    Get PDF
    First paragraph: In the far north of Scotland, a vast and varied expanse of blanket peatland (Figure 1) extends across an area of 4,000 km2 within the historic counties of Caithness and Sutherland, from the foot of the mountains in the west to the coast in the east. It is the largest expanse of blanket mire in Europe (Lindsay et al. 1988) and the largest single terrestrial carbon store in the UK (Chapman et al. 2009). It is known as the Flow Country. The Flow Country has high conservation value, being of particular importance for its suite of breeding birds which includes the Common Scoter (Melanitta nigra), Greenshank (Tringa nebularia), Dunlin (Calidris alpina), Golden Plover (Pluvialis apricaria) and Hen Harrier (Circus cyaneus), and a refuge for many species normally found closer to the Arctic (Lindsay et al. 1988). The nature conservation importance of this area is reflected in the designation of over 1,300 km2 as Natura 2000 sites under the European Habitats and Birds Directives, including the largest terrestrial Special Area of Conservation (SAC) in the UK, and the current consideration of the Flow Country for World Heritage Site status

    Rhizosphere activity and atmospheric methane concentrations drive variations of methane fluxes in a temperate forest soil

    Get PDF
    Aerated soils represent an important sink for atmospheric methane (CH⁠4), due to the effect of methanotrophic bacteria, thus mitigating current atmospheric CH⁠4 increases. Whilst rates of CH⁠4 oxidation have been linked to types of vegetation cover, there has been no systematic investigation of the interaction between plants and soil in relation to the strength of the soil CH⁠4 sink. We used quasi-continuous automated chamber measurements of soil CH⁠4 and CO⁠2 flux from soil collar treatments that selectively include root and ectomycorrhizal (ECM) mycelium to investigate the role of rhizosphere activity as well as the effects of other environmental drivers on CH⁠4 uptake in a temperate coniferous forest soil. We also assessed the potential impact of measurement bias from sporadic chamber measurements in altering estimates of soil CO⁠2 efflux and CH⁠4 uptake. Results show a clear effect of the presence of live roots and ECM mycelium on soil CO⁠2 efflux and CH⁠4 uptake. The presence of ECM hyphae alone (without plant roots) showed intermediate fluxes of both CO⁠2 and CH⁠4 relative to soils that either contained roots and ECM mycelium, or soil lacking root- and ECM mycelium. Regression analysis confirmed a significant influence of soil moisture as well as temperature on flux dynamics of both CH⁠4 and CO⁠2 flux. We further found a surprising increase in soil CH⁠4 uptake during the night, and discuss diurnal fluctuations in atmospheric CH⁠4 (with higher concentrations during stable atmospheric conditions at night) as a potential driver of CH⁠4 oxidation rates. Using the high temporal resolution of our data set, we show that low-frequency sampling results in systematic bias of up-scaled flux estimates, resulting in under-estimates of up to 20% at our study site, due to fluctuations in flux dynamics on diurnal as well as longer time scales

    Biotic interactions and biogeochemical processes in the soil environment

    Get PDF
    Soils play a key role in the terrestrial carbon (C) cycle by storing and emitting large quantities of C. The impact of abiotic conditions (mainly soil temperature and moisture) on soil C turnover is well documented, but unravelling the influence of these drivers across temporal and spatial scales remains an important challenge. Biotic factors, such as microbial abundance and diversity, macro-faunal food webs and below-ground plant (i.e. root) biomass and diversity, play an important role in controlling soil C storage and emission, but remain under-investigated. To better understand the soil processes underlying terrestrial C cycling, the interactions between plants (autotrophs) and soil organisms (heterotrophs) need to be addressed more explicitly and integrated with short- and long-term effects of abiotic drivers. This special issue presents recent advances in field, laboratory, and modelling studies on soil C dynamics, with a particular emphasis on those aiming to resolve abiotic and biotic influences. The manuscripts highlight three areas of investigation that we suggest are central to current and future progress in ecosystem C dynamic research: (1) novel interpretations of abiotic controls on soil CO2 efflux, (2) legacy effects of abiotic drivers of soil C dynamics, and (3) the interaction between plant C dynamics and soil biological processes

    MUSCLE ACTIVITY OF THREE SUBJECTS DIFFERING IN WEIGHT AND HEIGHT DURING A VERTICAL JUMP

    Get PDF
    Introduction: The first measurement was done to evaluate changes of potentials of surface electromyography with different locations of electrode sites and different resistors between the electrodes. The objective of the second was to investigate the activity of muscles in their stimulation sequence, the quantitative participation of the single muscle and cinematic study of vertical jumps. This work is part of a project to determine the internal forces of the human motional apparatus with an anatomical model of muscles. Methods: For each measurement we chose a Noraxon EMG, ECG electrodes from Medicotest, and the electrodes were placed following the description of D.A. Winter. At first we chose the M. gastro. med., M. gastro. lat., and M. soleus of male subject and did a measurement while the subject moved ten times from a ‘standing at attention’ posture to standing on the tips of his toes with a resistor between the electrodes higher than 60 Ohm and one with a resistor lower than 5 Ohm. Then we moved the electrodes 2 cm and 4 cm in the vertical and horizontal directions (resistor of lower than 5 Ohm). Secondly, we chose eight muscles (M. glut. max., M. semitend., M. biceps femoris, M. rectus femoris, M. vastus lat., M. vastus med., M. gastro. med., M. soleus) of three male subjects differing in weight and height and did the measurements while the subjects jumped ten times from a squatting position on a force plate, filmed by a high-speed camera. Results: The measurements with a 60 Ohm resistor and a 5 Ohm resistor differed, as well as the measurements with different locations of electrode sites. The second measurements showed that the M. gas. med. seemed to be the muscle with the highest response, followed by the M. sol. The M. vast. med., M. vast. lat., M. bic. fem. and M. rec. fem. had the same type of reaction. In one case the M. glut. max. seemed to be important while jumping. In an second case the M. semit. showed a high response. The muscles of the tallest subject had the longest activity, and the muscles of the shortest one had the shortest activity. The timedependent angles of knee, hip and foot joints of every subject were nearly identical. Like the EMG, the acceleration phases of the tallest subject took the longest time, while the acceleration phase of the shortest subject took the least time. Conclusions: Firstly, it is possible to see how important the placement and resistor of the electrodes is. Secondly, there is a possible relationship between the beginning of the activity of the muscles and the size of the subjects, as well as a correlation of the angles and the size of the subjects. This effect should be considered in using such calculations of the internal forces of the human motional apparatus in the development of protheses and in sports science

    THREE DIMENSIONAL MEASUREMENT OF THE GEOMETRY OF THE HUMAN MOTION APPARATUS

    Get PDF
    INTRODUCTION: This work is part of a project of the Department for Sports Medicine to calculate the internal stresses arising when jumping from a squat position. The goal of the project is to facilitate individual calculations by establishing a biomechanical model whose parameters are the major anatomical-geometrical and physiological quantities, gained by electromyogram (EMG) and radiological measurement. Procedures for acquiring the latter data are described here. METHODS: As the study did not involve pathologies, ionizing radiation was ruled out, and magnetic resonance imaging (MRI) was used. The biomechanical model required geometrical parameters from joint positions beyond those occurring during the squat-vault, so the Siemens Magnetom Open device was chosen. It has the disadvantage of relatively low magnetic field strength (0.2 T), but allows for almost unlimited movement in the table plane. Different measurement parameters were evaluated. As the length of the field of view was about 25 cm, the different joints had to be scanned separately. A positioning table was used to serve three purposes: 1. Positioning with defined joint angles, so the morphology could be related to the EMG measurements. 2. Exertion of force, to measure the geometry of muscles and tendons under strain. 3. Placement of markers with high MRI contrast, to relate the relative position of the scans of the different joints. [delete line space]. The evaluation of the images was done using the ‘Tübinger Medstation’ software developed by the Department of Computer Science at the University of Tübingen. RESULTS: Although the use of T2 weighted sequences resulted in better soft tissue contrast, the T1 weighted spin echo sequence was preferred because of shorter acquisition time, which was an important factor because measurements had to be made under strain. Bones and tendons, with their low hydrogen content, produce weak signals in MRI and thus contrast with the adjacent soft tissue. Even shorter acquisition times by use of a gradient sequence were ruled out because of their low signal/noise ratio, which rendered the fascies undetectable. Automatic segmentation of these fascies is extremely hard to achieve. The ‘Medstation’ software was used to extract coordinates of muscle and tendon insertions by hand and combine them in a common frame of reference. CONCLUSIONS: A procedure has been established to extract the geometrical data of muscles, tendons and osseous structures important for the biomechanical model. For this model, extended muscle and tendon insertions have to be reduced to a point by calculation of the center of mass of the insertion area. A table for the positioning of the probationer enabled positioning with reproducible joint angles under exertion of strain. To define the relative position of different scans a screen of markers was integrated into this plate
    corecore