43 research outputs found

    Sub-chronic toxicological evaluation of cleistanthin A and cleistanthin B from the leaves of Cleistanthus collinus (Roxb.)

    Get PDF
    AbstractObjectiveTo investigate the toxicological effects of cleistanthin A and cleistanthin B using sub-chronic toxicity testing in rodents.MethodCleistanthins A and B were isolated from the leaves of Cleistanthus collinus. Both the compounds were administered orally for 90 days at the concentration of 12.5, 25 and 50 mg/kg, and the effects on blood pressure, biochemical parameters and histology were assessed. The dose for sub-chronic toxicology was determined by fixed dose method according to OECD guidelines.ResultSub-chronic toxicity study of cleistanthins A and B spanning over 90 days at the dose levels of 12.5, 25 and 50 mg/kg (once daily, per oral) revealed a significant dose dependant toxic effect in lungs. The compounds did not have any effect on the growth of the rats. The food and water intake of the animals were also not affected by both cleistanthins A and B. Both the compounds did not have any significant effect on liver and renal markers. The histopathological analysis of both cleistanthins A and B showed dose dependent morphological changes in the brain, heart, lung, liver and kidney. When compared to cleistanthin A, cleistanthin B had more toxic effect in Wistar rats. Both the compounds have produced a dose dependent increase of corpora amylacea in brain and induced acute tubular necrosis in kidneys. In addition, cleistanthin B caused spotty necrosis of liver in higher doses.ConclusionThe present study concludes that both cleistanthin A and cleistanthin B exert severe toxic effects on lungs, brain, liver, heart and kidneys. They do not cause any significant pathological change in the reproductive system; neither do they induce neurodegenerative changes in brain. When compared to cleistanthin A, cleistanthin B is more toxic in rats

    MIRO-1 Determines Mitochondrial Shape Transition upon GPCR Activation and Ca^(2+) Stress

    Get PDF
    Mitochondria shape cytosolic calcium ([Ca^(2+)]_c) transients and utilize the mitochondrial Ca_2^+ ([Ca^(2+)]_m) in exchange for bioenergetics output. Conversely, dysregulated [Ca^(2+)]_c causes [Ca^(2+)]_m overload and induces permeability transition pore and cell death. Ablation of MCU-mediated Ca^(2+) uptake exhibited elevated [Ca^(2+)]_c and failed to prevent stress-induced cell death. The mechanisms for these effects remain elusive. Here, we report that mitochondria undergo a cytosolic Ca^(2+)-induced shape change that is distinct from mitochondrial fission and swelling. [Ca^(2+)]_c elevation, but not MCU-mediated Ca^(2+) uptake, appears to be essential for the process we term mitochondrial shape transition (MiST). MiST is mediated by the mitochondrial protein Miro1 through its EF-hand domain 1 in multiple cell types. Moreover, Ca^(2+)-dependent disruption of Miro1/KIF5B/tubulin complex is determined by Miro1 EF1 domain. Functionally, Miro1-dependent MiST is essential for autophagy/mitophagy that is attenuated in Miro1 EF1 mutants. Thus, Miro1 is a cytosolic Ca^(2+) sensor that decodes metazoan Ca^(2+) signals as MiST

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution.We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    MIRO-1 Determines Mitochondrial Shape Transition upon GPCR Activation and Ca^(2+) Stress

    Get PDF
    Mitochondria shape cytosolic calcium ([Ca^(2+)]_c) transients and utilize the mitochondrial Ca_2^+ ([Ca^(2+)]_m) in exchange for bioenergetics output. Conversely, dysregulated [Ca^(2+)]_c causes [Ca^(2+)]_m overload and induces permeability transition pore and cell death. Ablation of MCU-mediated Ca^(2+) uptake exhibited elevated [Ca^(2+)]_c and failed to prevent stress-induced cell death. The mechanisms for these effects remain elusive. Here, we report that mitochondria undergo a cytosolic Ca^(2+)-induced shape change that is distinct from mitochondrial fission and swelling. [Ca^(2+)]_c elevation, but not MCU-mediated Ca^(2+) uptake, appears to be essential for the process we term mitochondrial shape transition (MiST). MiST is mediated by the mitochondrial protein Miro1 through its EF-hand domain 1 in multiple cell types. Moreover, Ca^(2+)-dependent disruption of Miro1/KIF5B/tubulin complex is determined by Miro1 EF1 domain. Functionally, Miro1-dependent MiST is essential for autophagy/mitophagy that is attenuated in Miro1 EF1 mutants. Thus, Miro1 is a cytosolic Ca^(2+) sensor that decodes metazoan Ca^(2+) signals as MiST

    A common variant near TGFBR3 is associated with primary open angle glaucoma

    Get PDF
    Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array (Illumina) analysis on 3504 POAG cases and 9746 controls with replication of the most significant findings in 9173 POAG cases and 26 780 controls across 18 collections of Asian, African and European descent. Apart from confirming strong evidence of association at CDKN2B-AS1 (rs2157719 [G], odds ratio [OR] = 0.71, P = 2.81 × 10−33), we observed one SNP showing significant association to POAG (CDC7–TGFBR3 rs1192415, ORG-allele = 1.13, Pmeta = 1.60 × 10−8). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    Downloaded from

    Get PDF
    Abstract Primary open angle glaucoma (POAG), a major cause of blindness worldwide, is a complex disease with a significant genetic contribution. We performed Exome Array ), we observed one SNP showing significant association to POAG (CDC7-TGFBR3 rs1192415, OR G-allele = 1.13, P meta = 1.60 × 10 −8 ). This particular SNP has previously been shown to be strongly associated with optic disc area and vertical cup-to-disc ratio, which are regarded as glaucoma-related quantitative traits. Our study now extends this by directly implicating it in POAG disease pathogenesis

    Effect of doping cations Li(I)-, Ca(II)-, Ce(IV)- and V(V)- on the properties and crystalline perfection of potassium dihydrogen phosphate crystals: A comparative study

    Get PDF
    The effect of doping metal ions with varied ionic charges (ranging from +1 to +5), Li(I)-, Ca(II)-, Ce(IV)- and V(V)on the growth process and properties of potassium dihydrogen phosphate (KDP) crystals, grown by slow evaporation solution growth technique, has been investigated. Incorporation of metal ion into the KDP crystalline matrix is well confirmed by energy dispersive X-ray spectroscopy and atomic absorption spectroscopy. Interesting to observe that the incorporation is comparatively less in doping the higher valent metal. The powder XRD pattern and Fourier transform-IR analysis confirm the slight distortion in the structure of the KDP crystals as a result of metal ion doping. Slight changes in cell parameter values of doped KDP crystals are observed by single crystal XRD analysis. The high-resolution X-ray diffraction (HRXRD) studies used to evaluate the crystalline perfection reveal many interesting features on the ability of accommodating the dopants by the crystalline matrix. Surface morphological changes because of foreign metal ion incorporation are observed by scanning electron microscopy. UV-Vis spectroscopy reveals that the transparency is not affected much by the dopants and the cut-off wavelengths of all the doped specimens lie in a close range. Band-gap energies are estimated using optical transmittance data. Enhanced second harmonic generation efficiency is observed

    Inhibition of Drp-1 dependent mitochondrial fission augments alcohol-induced cardiotoxicity via dysregulated Akt signaling

    No full text
    Cardiovascular disorders (CVDs) still claim high mortality in spite of advancements in prognosis and treatment strategies. Alcohol is one of the most commonly consumed drugs globally and chronic/binge consumption (BAC 0.08 g/dL in 2 hours) is a risk factor for CVDs. However, the aetiology and pathophysiological mechanisms of alcohol induced cardiotoxicity are still poorly understood. Mitochondria are the prime site for the ATP demands of the heart and also ethanol metabolism. These subcellular organelles depict dynamic fusion and fission events that are vital for structure and functional integrity. While fused mitochondrial improve ATP production and cell survival, increased fragmentation can be the cause or result of apoptosis. In this study, we proposed to analyze the mechanism of mitochondrial fission protein Drp-1-dependent apoptosis during alcohol toxicity. Male Wistar rats (220-250 kg body weight) were given isocaloric sucrose or ethanol for 45 days, orally, via drinking water and intermittent gavage twice a week. Histopathological examination of the heart displayed hypertrophy with mild inflammation. Drp-1 immunoblotting showed over-expression of the protein during ethanol treatment. We next hypothesized that inhibiting Drp-1 could attenuate alcohol-induced cardiotoxicity. Interestingly, silencing Drp-1 with siRNA in-vitro augmented cytotoxicity. Also, crude mitochondrial fraction showed increased Bak aggregation, reduced cytochrome c release but increased SMAC/DIABLO. We analyzed the Akt cell survival signaling and found that PTEN showed over-expression at both transcriptional and translational level with no significant change in total Akt but down-regulation of p-Akt (Ser473). In conclusion, we have shown that inhibition of Drp-1 dependent mitochondrial fission is not cardioprotective against alcohol-induced apoptotic signaling and augments the cytotoxicity. To our knowledge, this study is the first to interlink cell survival AKT signaling as the cause for cytotoxicity during Bax/Bak dependent apoptosis, where inhibition of Drp-1 dependent fission fails to protect
    corecore