6,831 research outputs found

    Fast Fight Detection

    Get PDF
    Action recognition has become a hot topic within computer vision. However, the action recognition community has focused mainly on relatively simple actions like clapping, walking, jogging, etc. The detection of specific events with direct practical use such as fights or in general aggressive behavior has been comparatively less studied. Such capability may be extremely useful in some video surveillance scenarios like prisons, psychiatric centers or even embedded in camera phones. As a consequence, there is growing interest in developing violence detection algorithms. Recent work considered the well-known Bag-of-Words framework for the specific problem of fight detection. Under this framework, spatio-temporal features are extracted from the video sequences and used for classification. Despite encouraging results in which high accuracy rates were achieved, the computational cost of extracting such features is prohibitive for practical applications. This work proposes a novel method to detect violence sequences. Features extracted from motion blobs are used to discriminate fight and non-fight sequences. Although the method is outperformed in accuracy by state of the art, it has a significantly faster computation time thus making it amenable for real-time applications

    The effect of temperature and enzyme concentration in the transesterification process of synthetic microalgae oil

    Get PDF
    Throughout the world, the fossil fuel has supplied around the 80% of the energetic requirements, in Colombia alone 95.1% of energetic demand is made by the transportation sector solely, supplied by oil, kerosene, gasoline and diesel, this sector has an extremely small participation with biofuel of 3%, which is represented only by biodiesel. Microalgae had been proposed as biofactories with a remarkable third generation biofuels production. The culture of the microorganism comprehends interesting characteristics as countless environments where its natural growth could be replicated in fresh, salty and even sewage waters, with a higher growth rate and a higher oil production. The implementation of enzymes in the transesterification process have generated a good curiosity in the field, due to its mild reactions conditions, lesser energetic requirements, a high standard in the selection of the enzymes with the objective of avoiding the formation of soaps, creating in this way cleaner products and sub-products, in which the separation of the phases biodiesel/glycerol, give the possibility to recuperate the bio catalyzer and high output of reactions. However, the high volume of medium required to obtain lipids is one of the major drawbacks to test the viability of these enzymes. The present study aims to design an enzymatic transesterification process for the production of biodiesel form synthetic Chlorella oil. The synthetic oil was designed according to the lipid profile of C 16:0, C16:1, C18:0, C18:1, C18:2 and C18:3 from Chlorella spp CHL2 cultured on Bold Basal media under limited concentrations of NaNO3. The enzymatic transesterification efficiency was evaluated by the implementation of a 22 experimental factorial design (temperature and lipase concentration) under a 3: 1 molar ratio of alcohol:oil and a fixed reaction time of 6 hours. The obtained results show that, in order to obtain superior yields of biodiesel (>91%) the transesterification process must be carried out under temperature conditions close to 38°C and lipase concentrations of 5%

    GOLLUM: a next-generation simulation tool for electron, thermal and spin transport

    Get PDF
    We have developed an efficient simulation tool 'GOLLUM' for the computation of electrical, spin and thermal transport characteristics of complex nanostructures. The new multi-scale, multi-terminal tool addresses a number of new challenges and functionalities that have emerged in nanoscale-scale transport over the past few years. To illustrate the flexibility and functionality of GOLLUM, we present a range of demonstrator calculations encompassing charge, spin and thermal transport, corrections to density functional theory such as LDA+U and spectral adjustments, transport in the presence of non-collinear magnetism, the quantum-Hall effect, Kondo and Coulomb blockade effects, finite-voltage transport, multi-terminal transport, quantum pumps, superconducting nanostructures, environmental effects and pulling curves and conductance histograms for mechanically-controlled-break-junction experiments.Comment: 66 journal pages, 57 figure

    The influence of albedo on the size of hard X-ray flare sources

    Full text link
    Context: Hard X-rays from solar flares are an important diagnostic of particle acceleration and transport in the solar atmosphere. Any observed X-ray flux from on-disc sources is composed of direct emission plus Compton backscattered photons (albedo). This affects both the observed spectra and images as well as the physical quantities derived from them such as the spatial and spectral distributions of accelerated electrons or characteristics of the solar atmosphere. Aims: We propose a new indirect method to measure albedo and to infer the directivity of X-rays in imaging using RHESSI data. Methods: Visibility forward fitting is used to determine the size of a disc event observed by RHESSI as a function of energy. This is compared to the sizes of simulated sources from a Monte Carlo simulation code of photon transport in the chromosphere for different degrees of downward directivity and true source sizes to find limits on the true source size and the directivity. Results: The observed full width half maximum of the source varies in size between 7.4 arcsec and 9.1 arcsec with the maximum between 30 and 40 keV. Such behaviour is expected in the presence of albedo and is found in the simulations. A source size smaller than 6 arcsec is improbable for modest directivities and the true source size is likely to be around 7 arcsec for small directivities. Conclusions: While it is difficult to image the albedo patch directly, the effect of backscattered photons on the observed source size can be estimated. The increase in source size caused by albedo has to be accounted for when computing physical quantities that include the size as a parameter such as flare energetics. At the same time, the study of the albedo signature provides vital information about the directivity of X-rays and related electrons.Comment: 8 pages, 6 figures, A&A (accepted

    Resistance to antiangiogenic therapies by metabolic symbiosis in renal cell carcinoma PDX models and patients

    Get PDF
    Antiangiogenic drugs are used clinically for treatment of renal cell carcinoma (RCC) as a standard first-line treatment. Nevertheless, these agents primarily serve to stabilize disease, and resistance eventually develops concomitant with progression. Here, we implicate metabolic symbiosis between tumor cells distal and proximal to remaining vessels as a mechanism of resistance to antiangiogenic therapies in patient-derived RCC orthoxenograft (PDX) models and in clinical samples. This metabolic patterning is regulated by the mTOR pathway, and its inhibition effectively blocks metabolic symbiosis in PDX models. Clinically, patients treated with antiangiogenics consistently present with histologic signatures of metabolic symbiosis that are exacerbated in resistant tumors. Furthermore, the mTOR pathway is also associated in clinical samples, and its inhibition eliminates symbiotic patterning in patient samples. Overall, these data support a mechanism of resistance to antiangiogenics involving metabolic compartmentalization of tumor cells that can be inhibited by mTOR-targeted drugs

    Application of six detection methods for analysis of paralytic shellfish toxins in shellfish from four regions within Latin America

    Get PDF
    With the move away from use of mouse bioassay (MBA) to test bivalve mollusc shellfish for paralytic shellfish poisoning (PSP) toxins, countries around the world are having to adopt non-animal-based alternatives that fulfil ethical and legal requirements. Various assays have been developed which have been subjected to single-laboratory and multi-laboratory validation studies, gaining acceptance as official methods of analysis and approval for use in some countries as official control testing methods. The majority of validation studies conducted to date do not, however, incorporate shellfish species sourced from Latin America. Consequently, this study sought to investigate the performance of five alternative PSP testing methods together with the MBA, comparing the PSP toxin data generated both qualitatively and quantitatively. The methods included a receptor binding assay (RBA), two liquid chromatography with fluorescence detection (LC-FLD) methods including both pre-column and post-column oxidation, liquid chromatography with tandem mass spectrometry (LC-MS/MS) and a commercial lateral flow assay (LFA) from Scotia. A total of three hundred and forty-nine shellfish samples from Argentina, Mexico, Chile and Uruguay were assessed. For the majority of samples, qualitative results compared well between methods. Good statistical correlations were demonstrated between the majority of quantitative results, with a notably excellent correlation between the current EU reference method using pre-column oxidation LC-FLD and LC-MS/MS. The LFA showed great potential for qualitative determination of PSP toxins, although the findings of high numbers of false-positive results and two false negatives highlighted that some caution is still needed when interpreting results. This study demonstrated that effective replacement methods are available for countries that no longer wish to use the MBA, but highlighted the importance of comparing toxin data from the replacement method using local shellfish species of concern before implementing new methods in official control testing programs
    • …
    corecore