1,589 research outputs found

    Cervical cancer cell lines expressing NKG2D-ligands are able to down-modulate the NKG2D receptor on NKL cells with functional implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer represents the third most commonly diagnosed cancer and the fourth leading cause of cancer-related deaths in women worldwide. Natural killer (NK) cells play an important role in the defense against viruses, intracellular bacteria and tumors. NKG2D, an activating receptor on NK cells, recognizes MHC class I chain-related molecules, such as MICA/B and members of the ULBP/RAET1 family. Tumor-derived soluble NKG2D-ligands have been shown to down-modulate the expression of NKG2D on NK cells. In addition to the down-modulation induced by soluble NKG2D-ligands, it has recently been described that persistent cell-cell contact can also down-modulate NKG2D expression. The goal of this study was to determine whether the NKG2D receptor is down-modulated by cell-cell contact with cervical cancer cells and whether this down-modulation might be associated with changes in NK cell activity.</p> <p>Results</p> <p>We demonstrate that NKG2D expressed on NKL cells is down-modulated by direct cell contact with cervical cancer cell lines HeLa, SiHa, and C33A, but not with non-tumorigenic keratinocytes (HaCaT). Moreover, this down-modulation had functional implications. We found expression of NKG2D-ligands in all cervical cancer cell lines, but the patterns of ligand distribution were different in each cell line. Cervical cancer cell lines co-cultured with NKL cells or fresh NK cells induced a marked diminution of NKG2D expression on NKL cells. Additionally, the cytotoxic activity of NKL cells against K562 targets was compromised after co-culture with HeLa and SiHa cells, while co-culture with C33A increased the cytotoxic activity of the NKL cells.</p> <p>Conclusions</p> <p>Our results suggest that differential expression of NKG2D-ligands in cervical cancer cell lines might be associated with the down-modulation of NKG2D, as well as with changes in the cytotoxic activity of NKL cells after cell-cell contact with the tumor cells.</p

    Current guidelines for the implementation of flywheel resistance training technology in sports:a consensus statement

    Get PDF
    BackgroundFlywheel resistance training has become more integrated within resistance training programs in a variety of sports due to the neuromuscular, strength, and task-specific enhancements reported with this training.ObjectiveThis paper aimed to present the consensus reached by internationally recognized experts during a meeting on current definitions and guidelines for the implementation of flywheel resistance training technology in sports.MethodsNineteen experts from different countries took part in the consensus process; 16 of them were present at the consensus meeting (18 May 2023) while three submitted their recommendations by e-mail. Prior to the meeting, evidence summaries were developed relating to areas of priority. This paper discusses the available evidence and consensus process from which recommendations were made regarding the appropriate use of flywheel resistance training technology in sports. The process to gain consensus had five steps: (1) performing a systematic review of systematic reviews, (2) updating the most recent umbrella review published on this topic, (3) first round discussion among a sample of the research group included in this consensus statement, (4) selection of research group members—process of the consensus meeting and formulation of the recommendations, and (5) the consensus process. The systematic analysis of the literature was performed to select the most up-to-date review papers available on the topic, which resulted in nine articles; their methodological quality was assessed according to AMSTAR 2 (Assessing the Methodological Quality of Systematic Review 2) and GRADE (Grading Recommendations Assessment Development and Evaluation). Statements and recommendations scoring 7–9 were considered appropriate.ResultsThe recommendations were based on the evidence summary and researchers’ expertise; the consensus statement included three statements and seven recommendations for the use of flywheel resistance training technology. These statements and recommendations were anonymously voted on and qualitatively analyzed. The three statements reported a score ranging from 8.1 to 8.8, and therefore, all statements included in this consensus were considered appropriate. The recommendations (1–7) had a score ranging from 7.7 to 8.6, and therefore, all recommendations were considered appropriate.ConclusionsBecause of the consensus achieved among the experts in this project, it is suggested that practitioners and researchers should adopt the guidelines reported in this consensus statement regarding the use of flywheel resistance technology in sports

    Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV

    Get PDF
    We report new STAR measurements of mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S}, Ξ\Xi^{-}, Ξˉ+\bar{\Xi}^{+}, Ω\Omega^{-}, Ωˉ+\bar{\Omega}^{+} particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity yields for the Λ\Lambda, Λˉ\bar{\Lambda}, KS0K^{0}_{S} particles in Au+Au at \sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions

    Inclusive charged hadron elliptic flow in Au + Au collisions at sNN\sqrt{s_{NN}} = 7.7 - 39 GeV

    Get PDF
    A systematic study is presented for centrality, transverse momentum (pTp_T) and pseudorapidity (η\eta) dependence of the inclusive charged hadron elliptic flow (v2v_2) at midrapidity(η<1.0|\eta| < 1.0) in Au+Au collisions at sNN\sqrt{s_{NN}} = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants (v24v_2{4}), are presented in order to investigate non-flow correlations and v2v_2 fluctuations. We observe that the difference between v22v_2{2} and v24v_2{4} is smaller at the lower collision energies. Values of v2v_2, scaled by the initial coordinate space eccentricity, v2/εv_{2}/\varepsilon, as a function of pTp_T are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (sNN\sqrt{s_{NN}} = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at sNN\sqrt{s_{NN}} = 2.76 TeV). The v2(pT)v_2(p_T) values for fixed pTp_T rise with increasing collision energy within the pTp_T range studied (<2GeV/c< 2 {\rm GeV}/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v2(pT)v_{2}(p_{T}). We also compare the v2v_2 results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.Comment: 20 pages, 12 figures. Version accepted by PR

    Observation of the antimatter helium-4 nucleus

    Get PDF
    High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4Heˉ^4\bar{He}), also known as the anti-{\alpha} (αˉ\bar{\alpha}), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 4Heˉ^4\bar{He} counts were detected at the STAR experiment at RHIC in 109^9 recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.Comment: 19 pages, 4 figures. Submitted to Nature. Under media embarg

    Longitudinal Spin Transfer to Λ\Lambda and Λˉ\bar{\Lambda} Hyperons in Polarized Proton-Proton Collisions at s\sqrt{s} = 200 GeV

    Get PDF
    The longitudinal spin transfer, DLLD_{LL}, from high energy polarized protons to Λ\Lambda and Λˉ\bar{\Lambda} hyperons has been measured for the first time in proton-proton collisions at s=200GeV\sqrt{s} = 200 \mathrm{GeV} with the STAR detector at RHIC. The measurements cover pseudorapidity, η\eta, in the range η<1.2|\eta| < 1.2 and transverse momenta, pTp_\mathrm{T}, up to 4GeV/c4 \mathrm{GeV}/c. The longitudinal spin transfer is found to be DLL=0.03±0.13(stat)±0.04(syst)D_{LL}= -0.03\pm 0.13(\mathrm{stat}) \pm 0.04(\mathrm{syst}) for inclusive Λ\Lambda and DLL=0.12±0.08(stat)±0.03(syst)D_{LL} = -0.12 \pm 0.08(\mathrm{stat}) \pm 0.03(\mathrm{syst}) for inclusive Λˉ\bar{\Lambda} hyperons with =0.5 = 0.5 and =3.7GeV/c = 3.7 \mathrm{GeV}/c. The dependence on η\eta and pTp_\mathrm{T} is presented.Comment: 5 pages, 4 figure

    Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p\textit{p+p} collisions at sNN\sqrt{s_{NN}} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie

    K/pi Fluctuations at Relativistic Energies

    Get PDF
    We report results for K/πK/\pi fluctuations from Au+Au collisions at sNN\sqrt{s_{NN}} = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for K/πK/\pi fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at sNN\sqrt{s_{NN}} = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of K/πK/\pi fluctuations as well as results for K+/π+K^{+}/\pi^{+}, K/πK^{-}/\pi^{-}, K+/πK^{+}/\pi^{-}, and K/π+K^{-}/\pi^{+} fluctuations. We observe that the K/πK/\pi fluctuations scale with the multiplicity density, dN/dηdN/d\eta, rather than the number of participating nucleons.Comment: 6 pages, 4 figure
    corecore