2,041 research outputs found

    Angiotensin-converting enzyme gene 2350 G/A polymorphism and susceptibility to atrial fibrillation in Han Chinese patients with essential hypertension

    Get PDF
    OBJECTIVE: The angiotensin-converting enzyme gene is one of the most studied candidate genes related to atrial fibrillation. Among the polymorphisms of the angiotensin-converting enzyme gene, the 2350 G/A polymorphism (rs4343) is known to have the most significant effects on the plasma angiotensin-converting enzyme concentration. The aim of the present study was to investigate the association of the angiotensin-converting enzyme 2350 G/A polymorphism with atrial fibrillation in Han Chinese patients with essential hypertension. METHODS: A total of 169 hypertensive patients were eligible for this study. Patients with atrial fibrillation (n = 75) were allocated to the atrial fibrillation group, and 94 subjects without atrial fibrillation were allocated to the control group. The PCR-based restriction fragment length polymorphism technique was used to assess the genotype frequencies. RESULTS: The distributions of the angiotensin-converting enzyme 2350 G/A genotypes (GG, GA, and AA, respectively) were 40.43%, 41.49%, and 18.08% in the controls and 18.67%, 46.67%, and 34.66% in the atrial fibrillation subjects (p = 0.037). The frequency of the A allele in the atrial fibrillation group was significantly greater than in the control group (58.00% vs. 38.83%, p = 0.0007). Compared with the wild-type GG genotype, the GA and AA genotypes had an increased risk for atrial fibrillation. Additionally, atrial fibrillation patients with the AA genotype had greater left atrial dimensions than the patients with the GG or GA genotypes (

    Improving the Accuracy of Density Functional Theory (DFT) Calculation for Homolysis Bond Dissociation Energies of Y-NO Bond: Generalized Regression Neural Network Based on Grey Relational Analysis and Principal Component Analysis

    Get PDF
    We propose a generalized regression neural network (GRNN) approach based on grey relational analysis (GRA) and principal component analysis (PCA) (GP-GRNN) to improve the accuracy of density functional theory (DFT) calculation for homolysis bond dissociation energies (BDE) of Y-NO bond. As a demonstration, this combined quantum chemistry calculation with the GP-GRNN approach has been applied to evaluate the homolysis BDE of 92 Y-NO organic molecules. The results show that the ull-descriptor GRNN without GRA and PCA (F-GRNN) and with GRA (G-GRNN) approaches reduce the root-mean-square (RMS) of the calculated homolysis BDE of 92 organic molecules from 5.31 to 0.49 and 0.39 kcal mol−1 for the B3LYP/6-31G (d) calculation. Then the newly developed GP-GRNN approach further reduces the RMS to 0.31 kcal mol−1. Thus, the GP-GRNN correction on top of B3LYP/6-31G (d) can improve the accuracy of calculating the homolysis BDE in quantum chemistry and can predict homolysis BDE which cannot be obtained experimentally

    Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Get PDF
    Human umbilical cord mesenchymal stem cells (hUCMSCs) are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs) signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK) and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK) signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP) activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering. Copyright © 2016 Chen-Shuang Li et al

    A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria

    Get PDF
    Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean

    Intramolecular π Stacking in Cationic Iridium(III) Complexes with Phenyl-Functionalized Cyclometalated Ligands: Synthesis, Structure, Photophysical Properties, and Theoretical Studies

    Get PDF
    The syntheses of two new heteroleptic cationic iridium complexes containing 2,6-diphenylpyridine (Hdppy) and 2,4,6-triphenylpyridine (Htppy) as the cyclometalated ligands, namely, [Ir(dppy)2phen]PF6 (1, phen = 1,10-phenanthroline) and [Ir(tppy)2phen]PF6 (2), are described. The X-ray crystal structure of 2 reveals a distorted octahedral geometry around the Ir center and close intramolecular face-to-face π–π stacking interactions between the pendant phenyl rings at the 2-position of the cyclometalated ligands and the NN ancillary ligand. This represents a new π–π stacking mode in charged Ir complexes. Complexes 1 and 2 are green photoemitters: their photophysical and electrochemical properties are interpreted with the assistance of density functional theory (DFT) calculations. These calculations also establish that the observed intramolecular interactions cannot effectively prevent the lengthening of the Ir–N bonds of the complexes in their metal-centered (3MC) states. Complexes 1 and 2 do not emit light in light-emitting electrochemical cells (LECs) under conditions in which the model compound [Ir(ppy)2phen]PF6 (3) emits strongly. This is explained by degradation reactions of the 3MC state of 1 and 2 under the applied bias during LEC operation facilitated by the enhanced distortions in the geometry of the complexes. These observations have important implications for the future design of complexes for LEC applications

    Tetra­aqua­bis(2-oxo-1,2-dihydro­quinoline-4-carboxyl­ato-κO 4)nickel(II)

    Get PDF
    In the title compound, [Ni(C10H6NO3)2(H2O)4], the central NiII atom is located on an inversion center and coordinated in a slightly distorted octa­hedral geometry by two O atoms from two 2-oxo-1,2-dihydro­quinoline-4-carboxyl­ate ligands and four water mol­ecules, all of which act as monodentate ligands. The crystal structure features an extensive network of inter­molecular hydrogen-bonding inter­actions (O—H⋯O and N—H⋯O) and offset face-to-face π–π stacking inter­actions [centroid–centroid distances = 3.525 (3) and 3.281 (5) Å]

    NLRP3 Inflammasome Activation-Mediated Pyroptosis Aggravates Myocardial Ischemia/Reperfusion Injury in Diabetic Rats

    Get PDF
    The reactive oxygen species- (ROS-) induced nod-like receptor protein-3 (NLRP3) inflammasome triggers sterile inflammatory responses and pyroptosis, which is a proinflammatory form of programmed cell death initiated by the activation of inflammatory caspases. NLRP3 inflammasome activation plays an important role in myocardial ischemia/reperfusion (MI/R) injury. Our present study investigated whether diabetes aggravated MI/R injury through NLRP3 inflammasome-mediated pyroptosis. Type 1 diabetic rat model was established by intraperitoneal injection of streptozotocin (60 mg/kg). MI/R was induced by ligating the left anterior descending artery (LAD) for 30 minutes followed by 2 h reperfusion. H9C2 cardiomyocytes were exposed to high glucose (HG, 30 mM) conditions and hypoxia/reoxygenation (H/R) stimulation. The myocardial infarct size, CK-MB, and LDH release in the diabetic rats subjected to MI/R were significantly higher than those in the nondiabetic rats, accompanied with increased NLRP3 inflammasome activation and increased pyroptosis. Inhibition of inflammasome activation with BAY11-7082 significantly decreased the MI/R injury. In vitro studies showed similar effects, as BAY11-7082 or the ROS scavenger N-acetylcysteine, attenuated HG and H/R-induced H9C2 cell injury. In conclusion, hyperglycaemia-induced NLRP3 inflammasome activation may be a ROS-dependent process in pyroptotic cell death, and NLRP3 inflammasome-induced pyroptosis aggravates MI/R injury in diabetic rats

    Exploring Charge Dissociation in a Statistical Sample of Active-Layer Models of an Organic Solar Cell

    Get PDF
    Charge dissociation in the active layer is one of the key factors for the power conversion efficiency of bulk heterojunction organic solar cells (OSCs). Numerous charge-transfer mechanisms have been proposed based on one of few microscopic models. Here, we would explore possible charge-transfer mechanisms for 155 models of donor/acceptor (D/A) interfaces, built via materials DCV-1 and C60 as the donor and acceptor, respectively. After the calculations of the key parameters related to the charge dissociation and a statistical analysis for the correlation between these parameters were carried out, we can obtain a more robust description of the charge dissociation in practical OSCs. The complicated relationship among the key parameters not only illustrates the important correlation between the D/A stacking pattern and charge-transfer mechanism but also suggests that different charge-transfer mechanisms take place more likely depending on the specific arrangements of the donor and acceptor

    Direct In Situ Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt(hkl) Surfaces

    Get PDF
    The study of the oxygen reduction reaction (ORR) at high-index Pt(hkl) single crystal surfaces has received considerable interest due to their well-ordered, typical atomic structures and superior catalytic activities. However, it is difficult to obtain direct spectral evidence of ORR intermediates during reaction processes, especially at high-index Pt(hkl) surfaces. Herein, in situ Raman spectroscopy has been employed to investigate ORR processes at high-index Pt(hkl) surfaces containing the [011̅] crystal zone—i.e., Pt(211) and Pt(311). Through control and isotope substitution experiments, in situ spectroscopic evidence of OH and OOH intermediates at Pt(211) and Pt(311) surfaces was successfully obtained. After detailed analysis based on the Raman spectra and theoretical simulation, it was deduced that the difference in adsorption of OOH at high-index surfaces has a significant effect on the ORR activity. This research illuminates and deepens the understanding of the ORR mechanism on high-index Pt(hkl) surfaces and provides theoretical guidance for the rational design of high activity ORR catalysts.This work was financially supported by the National Natural Science Foundation of China (21902137, 21925404, 21775127, and 21427813), the Fundamental Research Funds for the Central Universities (20720190044), the China Postdoctoral Science Foundation (2019M652250), and the China Postdoctoral Innovation Talent Support Program (BX20190184). Support from MINECO through project CTQ2016-76221-P (AEI/FEDER, UE) is greatly acknowledged
    corecore