938 research outputs found

    Angiotensin-converting enzyme gene 2350 G/A polymorphism and susceptibility to atrial fibrillation in Han Chinese patients with essential hypertension

    Get PDF
    OBJECTIVE: The angiotensin-converting enzyme gene is one of the most studied candidate genes related to atrial fibrillation. Among the polymorphisms of the angiotensin-converting enzyme gene, the 2350 G/A polymorphism (rs4343) is known to have the most significant effects on the plasma angiotensin-converting enzyme concentration. The aim of the present study was to investigate the association of the angiotensin-converting enzyme 2350 G/A polymorphism with atrial fibrillation in Han Chinese patients with essential hypertension. METHODS: A total of 169 hypertensive patients were eligible for this study. Patients with atrial fibrillation (n = 75) were allocated to the atrial fibrillation group, and 94 subjects without atrial fibrillation were allocated to the control group. The PCR-based restriction fragment length polymorphism technique was used to assess the genotype frequencies. RESULTS: The distributions of the angiotensin-converting enzyme 2350 G/A genotypes (GG, GA, and AA, respectively) were 40.43%, 41.49%, and 18.08% in the controls and 18.67%, 46.67%, and 34.66% in the atrial fibrillation subjects (p = 0.037). The frequency of the A allele in the atrial fibrillation group was significantly greater than in the control group (58.00% vs. 38.83%, p = 0.0007). Compared with the wild-type GG genotype, the GA and AA genotypes had an increased risk for atrial fibrillation. Additionally, atrial fibrillation patients with the AA genotype had greater left atrial dimensions than the patients with the GG or GA genotypes (

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Brain grey matter volume alterations associated with antidepressant response in major depressive disorder

    Get PDF
    Not all patients with major depressive disorder respond to adequate pharmacological therapy. Psychoradiological studies have reported that antidepressant responders and nonresponders show different alterations in brain grey matter, but the findings are inconsistent. The present study reports a meta-analysis of voxel-based morphometric studies of patients with major depressive disorder, both antidepressant responders and nonresponders, using the anisotropic effect size version of Seed-based D Mapping to identify brain regions correlated to clinical response. A systematic search was conducted up to June 2016 to identify studies focussing on antidepressant response. In responders across 9 datasets grey matter volume (GMV) was significantly higher in the left inferior frontal gyrus and insula, while GMV was significantly lower in the bilateral anterior cingulate cortex (ACC) and the right superior frontal gyrus (SFG). In nonresponders across 5 datasets GMV was significantly lower in the bilateral ACC, median cingulate cortex (MCC) and right SFG. Conjunction analysis confirmed significant differences in the bilateral ACC and right SFG, where GMV was significantly lower in nonresponders but higher in responders. The current study adds to psychoradiology, an evolving subspecialty of radiology mainly for psychiatry and clinical psychology

    Low-cell-number, single-tube amplification (STA) of total RNA revealed transcriptome changes from pluripotency to endothelium

    Get PDF
    Table S1. Summary of the sequencing results. The alignments against the GRCh38 genome assembly (Aligned Reads) were counted for exon reads (exon) and transcript reads based on GENCODE v22. Intronic counts (intron) were defined by transcript counts minus exon ones. Nontranscript reads were used to obtain tRNA counts (tRNA) based on the tRNA database of GENCODE v22. Nontranscript and non-tRNA reads were used for counts on repetitive sequences (repeats) based on RepeatMasker. Those not belonging to any category were defined as unannotated reads (unannotated). The counting of exonic features was based on the “gene_type” attribute in GENCODE v22. The percentages of mature miRNA reads were defined by reads aligned exclusively to the mature “miRNA” feature divided by reads aligned to the “miRNA_primary_transcript” feature of miRBase v21. (DOCX 42 kb

    Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors

    Get PDF
    Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D1 receptor (D1R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D1R neurons. Optogenetic activation of NAc D1R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D1R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D1R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D1R neuron circuits are essential for the induction and maintenance of wakefulness

    Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome

    Get PDF
    BackgroundPolycystic ovarian syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenism, ovarian dysfunction and polycystic ovarian morphology. Gut microbiota dysbiosis and metabolite are associated with PCOS clinical parameters. Yulin Tong Bu formula (YLTB), a traditional Chinese medicine formula, has been recently indicated to be capable of ameliorating polycystic ovary symptoms and correcting abnormal glucose metabolism. However, the therapeutic mechanism of YLTB on PCOS has not been fully elucidated.MethodsA pseudo sterile mouse model was established during this four-day acclimatization phase by giving the animals an antibiotic cocktail to remove the gut microbiota. Here, the therapeutic effects of YLTB on PCOS were investigated using dehydroepiandrosterone plus high-fat diet-induced PCOS mice model. Female prepuberal mice were randomly divided into three groups; namely, the control group, PCOS group and YLTB (38.68 g·kg-1·day-1) group. To test whether this effect is associated with the gut microbiota, we performed 16S rRNA sequencing studies to analyze the fecal microbiota of mice. The relationships among metabolites, gut microbiota, and PCOS phenotypes were further explored by using Spearman correlation analysis. Then, the effect of metabolite ferulic acid was then validated in PCOS mice.ResultsOur results showed that YLTB treatment ameliorated PCOS features (ovarian dysfunction, delayed glucose clearance, decreased insulin sensitivity, deregulation of glucolipid metabolism and hormones, etc.) and significantly attenuated PCOS gut microbiota dysbiosis. Spearman correlation analysis showed that metabolites such as ferulic acid and folic acid are negatively correlated with PCOS clinical parameters. The effect of ferulic acid was similar to that of YLTB. In addition, the bacterial species such as Bacteroides dorei and Bacteroides fragilis were found to be positively related to PCOS clinical parameters, using the association study analysis.ConclusionThese results suggest that YLTB treatment systematically regulates the interaction between the gut microbiota and the associated metabolites to ameliorate PCOS, providing a solid theoretical basis for further validation of YLTB effect on human PCOS trials
    • …
    corecore