3,618 research outputs found

    Spherical solid-propellant rocket motor Patent

    Get PDF
    Spherical solid propellant rocket engine desig

    End-Effector Mobility for Manipulators in Confined Spaces

    Get PDF

    Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo

    Full text link
    Quantum unitary evolution typically leads to thermalization of generic interacting many-body systems. There are very few known general methods for reversing this process, and we focus on the magic echo, a radio-frequency pulse sequence known to approximately "rewind" the time evolution of dipolar coupled homonuclear spin systems in a large magnetic field. By combining analytic, numerical, and experimental results we systematically investigate factors leading to the degradation of magic echoes, as observed in reduced revival of mean transverse magnetization. Going beyond the conventional analysis based on mean magnetization we use a phase encoding technique to measure the growth of spin correlations in the density matrix at different points in time following magic echoes of varied durations and compare the results to those obtained during a free induction decay (FID). While considerable differences are documented at short times, the long-time behavior of the density matrix appears to be remarkably universal among the types of initial states considered - simple low order multispin correlations are observed to decay exponentially at the same rate, seeding the onset of increasingly complex high order correlations. This manifestly athermal process is constrained by conservation of the second moment of the spectrum of the density matrix and proceeds indefinitely, assuming unitary dynamics.Comment: 12 Pages, 9 figure

    Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS

    Get PDF
    The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge

    Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny

    Get PDF
    Scleractinian corals' microbial symbionts influence host health, yet how coral microbiomes assembled over evolution is not well understood. We survey bacterial and archaeal communities in phylogenetically diverse Australian corals representing more than 425 million years of diversification. We show that coral microbiomes are anatomically compartmentalized in both modern microbial ecology and evolutionary assembly. Coral mucus, tissue, and skeleton microbiomes differ in microbial community composition, richness, and response to host vs. environmental drivers. We also find evidence of coral-microbe phylosymbiosis, in which coral microbiome composition and richness reflect coral phylogeny. Surprisingly, the coral skeleton represents the most biodiverse coral microbiome, and also shows the strongest evidence of phylosymbiosis. Interactions between bacterial and coral phylogeny significantly influence the abundance of four groups of bacteria-including Endozoicomonas-like bacteria, which divide into host-generalist and host-specific subclades. Together these results trace microbial symbiosis across anatomy during the evolution of a basal animal lineage

    Phase 1 Study of the E-Selectin Inhibitor GMI 1070 in Patients with Sickle Cell Anemia

    Get PDF
    Background\ud \ud Sickle cell anemia is an inherited disorder of hemoglobin that leads to a variety of acute and chronic complications. Abnormal cellular adhesion, mediated in part by selectins, has been implicated in the pathophysiology of the vaso-occlusion seen in sickle cell anemia, and selectin inhibition was able to restore blood flow in a mouse model of sickle cell disease.\ud \ud Methods\ud \ud We performed a Phase 1 study of the selectin inhibitor GMI 1070 in patients with sickle cell anemia. Fifteen patients who were clinically stable received GMI 1070 in two infusions.\ud \ud Results\ud \ud The drug was well tolerated without significant adverse events. There was a modest increase in total peripheral white blood cell count without clinical symptoms. Plasma concentrations were well-described by a two-compartment model with an elimination T1/2 of 7.7 hours and CLr of 19.6 mL/hour/kg. Computer-assisted intravital microscopy showed transient increases in red blood cell velocity in 3 of the 4 patients studied.\ud \ud Conclusions\ud \ud GMI 1070 was safe in stable patients with sickle cell anemia, and there was suggestion of increased blood flow in a subset of patients. At some time points between 4 and 48 hours after treatment with GMI 1070, there were significant decreases in biomarkers of endothelial activation (sE-selectin, sP-selectin, sICAM), leukocyte activation (MAC-1, LFA-1, PM aggregates) and the coagulation cascade (tissue factor, thrombin-antithrombin complexes). Development of GMI 1070 for the treatment of acute vaso-occlusive crisis is ongoing

    Very Early Smoke Detection Apparatus (VESDA), David Packham, John Petersen, Martin Cole: 2017 DiNenno Prize

    Get PDF
    The 2017 Phillip J. DiNenno Prize was awarded to the innovators of the VESDA smoke detection system. The initialtechnology was invented and patented byDavid PackhamandLen Gibson, who worked withJohn Petersenonprototype development, field trials, and applications engineering.Dr. Martin Colewas responsible for the successfulcommercial development and many further patented technical developments. The VESDA technology and its pre-eminent role in the introduction of aspirated smoke detection (ASD) internationally has led to a major global impacton public safety.The recipients of the 2017 Philip J. DiNenno Prize areDavid Packham,John Petersen,andDr. Martin Cole.Amplecommendation is given to their deceased co-inventor and passionate advocateLen Gibson.Otherimportantcontributions are noted, including technical and other staff from IEI, CSIRO, SSL and Telecom Australia
    • …
    corecore