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Abstract 

The provision of fundamental services by water and sewage companies (WaSCs) requires 

substantial energy and material inputs. A sustainability assessment of these companies 

requires a holistic evaluation of both performance and efficiency. The Hicks-Moorsteen 

productivity index was applied to 12 WaSCs in the United Kingdom (UK) over a 6-year period 

to benchmark their sustainability, based on eight approaches using different input and output 

variables for efficiency assessment. The choice of variables had a major influence on the 

ranking and perceived operational efficiency among WaSCs. Capital expenditure (utilised as 

part of total expenditure) for example, is an important input for tracking company operations 

however, potential associated efficiency benefits can lag investment, leading to apparent poor 

short-term performance following capital expenditure. Furthermore, water supplied and 

wastewater treated was deemed an unconstructive output from a sustainability perspective 

since it contradicts efforts to improve sustainability through reduced leakage and consumption 

per capita. Customer satisfaction and water quality measures are potential suitable 

alternatives. Despite these limitations, total expenditure and water supplied and wastewater 

treated were used alongside customer satisfaction and self-generated renewable energy for 

a holistic sustainability assessment within a small sample. They indicated the UK water sector 

has improved in productivity by 1.8% on average for 2014-18 and still had room for 
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improvement, as a technical decline was evident for both the best and worst performers. 

Collectively the sample’s production frontier was unchanged but on average companies 

moved 2.1% closer to it, and further decomposition of productivity revealed this was due to 

improvements in economies of scale and scope. Careful selection of appropriate input and 

output variables for efficiency benchmarking across water companies is critical to align with 

sustainability objectives and to target future investment and regulation within the water sector. 

 

Keywords: Performance Evaluation; Water Companies; Total Factor Productivity; Data 

Envelopment Analysis; Sustainability assessment; Hicks-Moorsteen productivity index 
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List of Abbreviations 

CAPEX  Capital Expenditure 

CRS    Constant Returns to Scale 

DEA    Data Envelopment Analysis  

GWh   Gigawatt hours 

HMPI    Hick-Moorsteen Productivity Index 

IME   Input-oriented Mix Efficiency 

ISE   Input-oriented Scale Efficiency 

ITE    Input-oriented Technical Efficiency 

Ml   Megalitre 

MPI   Malmquist Productivity Index  

OPEX   Operational Expenditure 

RISE   Residual Input-oriented Scale Efficiency 

RME    Residual Mix Efficiency 

SFA   Stochastic Frontier Analysis 

SIM   Service Incentive Mechanism 

TECH   Technical Change 

TFP   Total Factor Productivity  

TFPE   Total Factor Productivity Efficiency Change 

TOTEX  Total Expenditure  

UK   United Kingdom 

VRS    Variable Returns to Scale 

WaSC    Water and Sewage Company 
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 Introduction 

A reliable and efficient supply of safe, treated water is fundamental to a prosperous society 

(Martínez-Santos, 2017) however, not all water networks are sustainable under current 

climate change projections (Zischg et al., 2017). When one measures the efficiency and 

sustainability of water systems they should consider a broad range of variables, including 

economic, social (e.g. sanitation) and environmental (e.g. carbon emission) impacts. 

Performance evaluation and benchmarking of water companies is vital to promote efficiency 

and protect the interest of customers (Zope et al., 2019). The number of studies on water 

company performance analysis has increased in recent years (Lombardi et al., 2019), and 

while this has covered many different locations and times, and applied numerous different 

methodologies, a more integrated assessment that includes environmental sustainability of 

water utilities is relatively rare compared to more focussed studies (de Witte and Marques, 

2012; Cetrulo et al., 2019; Goh and See, 2020).  

The majority of benchmarking and performance analysis of the water sector focuses on 

economic efficiency, as outlined by Abbot and Cohen (2009), Worthington (2014) and 

Lombardi et al. (2019). Amongst the financial indicators in these studies, labour and 

infrastructure often feature. Research with a focus on other factors are limited, except for a 

few notable works. Energy consumption is one of the most popular non-financial indicators 

utilised (although often used as a cost), as can be seen in the de Witte and Marques (2010a) 

and Krampe (2013) studies, which encompass water supply companies and treatment plants, 

respectively. More alternative assessments of efficiency include Tsargarakis (2018), who 

evaluated water company complaints against operational expenditure; Ananda and Pawsey 

(2019), where they analysed customer service and network reliability; and Haziq et al. (2019) 

that determined the satisfaction levels of customers against services provided. Although such 

studies have use on their own, a combination of the diversified subject matter outlined above 

for water companies within one sustainability assessment would offer unique insight, since 

only a handful of studies have taken this approach previously (e.g., Gill and Nema, 2016; 
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Molinos-Senante et al., 2016a; Murungi and Blokland, 2016; Villarreal and Lartigue, 2017, 

Pérez et al., 2019). Even within these studies, some split up their analyses into separate 

models, and still do not include energy within any of their approaches (Gill and Nema, 2016; 

Murungi and Blokland, 2016; Villarreal and Lartigue, 2017) however, prioritising service 

reliability, water quality, and customer satisfaction in their samples of developing countries is 

valuable. A holistic view would be particularly poignant considering the significant impact that 

water companies have on society. For example, the United Kingdom (UK) water industry 

employs 58,500 people, has an annual turnover of £11 billion (Energy and Utility Skills, 2020), 

and consumes 3% of national electricity (Majid et al., 2020). Furthermore, the array of 

approaches to analysing efficiency creates questions around the pitfalls and positives of the 

diverging variables. Selecting the appropriate variables is vital for a valid study as Villegas et 

al. (2019) and Molinos-Senante and Maziotis (2020a) displayed in their studies of England 

and Wales. Therefore understanding how the choice of variables relate to the study objective 

is imperative in order to draw meaningful conclusions.  

Measuring efficiency can be an important aspect of complying with sustainability targets, which 

are often based on the aggregate impact of all consumption, such as fossil energy, resource 

use, and greenhouse gas emissions (Bonilla et al., 2018). Input-orientated efficiency is 

determined by assessing the levels of outputs relative to the levels of inputs, with the goal 

being to produce the most outputs with the fewest inputs. Naturally, efficiency results are 

affected by the choice of inputs and outputs used in the assessment. To investigate how to 

better evaluate the efficiency of water companies in a sustainability sense, an evaluation of 

the effects of using different variables that cover social, environmental and economic factors 

was undertaken. To conduct this, Total Factor Productivity (TFP) was used. In the context of 

this study, when benchmarking the efficiency of water and sewerage companies (WaSCs), 

productivity and efficiency are slightly different concepts. Productivity comprises of evaluating 

performance change over time, thus integrating a temporal element to sustainability analysis 

(Le et al., 2019). Goh and See (2020) reviewed 142 journal articles regarding water utility 



 6 

benchmarking between 2000-2019 and noted TFP was only used as a keyword in seven 

studies, whilst productivity growth appeared 12 times.  

There is an array of indices that have been developed to compute TFP and have been utilised 

to evaluate water companies. They can be grouped into parametric and non-parametric 

methods, the former assuming a predefined technology function. The non-parametric  

approach can further be classified into frontier and non-frontier methods. One of the most 

common non-frontier methodologies is the Törnqvist productivity index (Berhera and Sharma, 

2020; Oulmane et al., 2020), which measures the ratio of all the outputs, weighted by the 

corresponding revenues, to all the inputs, that are weighted by cost, in quantities by using the 

firms within the sample to be evaluated themselves (Simoes and Marques 2012). Many non-

parametric frontier methods are used to compute TFP and have been applied to the water 

industry, such as the Färe-Primont productivity index (Molinos-Senante et al., 2017a), 

Malmquist Productivity Index (MPI) (Molinos-Sennante et al., 2017b), Luenberger Productivity 

Index (Sala-Garrido et al., 2018), Malmquist-Luenberger productivity indicator (Ananda, 2018; 

Sala-Garrido et al., 2019), and the Hicks-Moorsteen Productivity Index (HMPI) (Molinos-

Senante et al., 2016b). The essential advantage of these non-parametric frontier methods 

over parametric methods is that they do not require a priori assumptions about the functional 

relationship between the variables, which can cause specification and estimation problems 

(Murillo-Zamorano and Vega-Cervera, 2001).  

The MPI, which was introduced by Caves et al. (1982), is the most commonly applied method 

to analyse changes in TFP. The reason for its popularity is that it can be computed without 

price data, and can be broken down into measures of technical and efficiency changes (Shao 

and Lin, 2016). Despite the numerous positives of MPI, it does have some decisive limitations. 

O’Donnell (2014) comments that some of the distance functions within the index may be 

undefined and infeasibility problems might then ensue (Kerstens and Van De Woestyne, 

2014). As an outcome, the results from MPI may not accurately express TFP change from 

scale effects. Moreover, MPI requires a choice of input or output orientation (Molinos-Senante 
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et al., 2020), and is deemed inappropriate when the sample operates under variable returns 

to scale (VRS), as Grifell-Tatje and Lovell (1995) and O’Donnell (2008) demonstrated. VRS 

refers to a change in inputs that is not directly proportional to a change in outputs (Färe and 

Primont, 1995). MPI is thus not applicable to many situations.  

The limitations that MPI encompasses are largely overcome by the HMPI. Defined as a ratio 

of the Malmquist input and output indices, while using the Shephard input and output distance 

functions, respectively (Bjurek, 1998), the HMPI does not require price data and satisfies all 

other index conditions, including multiplicative completeness and transitivity tests (O’Donnell, 

2012). The HMPI thus functions within a simultaneous input and output orientation, and can 

be computed under both constant returns to scale (CRS) and VRS technologies, giving it a 

distinct advantage over similar TFP methods like MPI. Furthermore, HMPI makes no 

assumptions on behavioural aims such as maximising profit, or market settings like regulation 

and competition (Dhillon and Vachharajani, 2018). Briec and Kersten (2011) highlighted 

further advantages of HMPI, commenting that under strong input and output disposability, the 

determinateness axiom is satisfied so that infeasibility problems are avoided. Meaning that 

the index is well defined even when one or more of its arguments becomes zero or infinity. A 

feature of HMPI that makes it preferable to other TFP approaches is one it shares with MPI, 

which is that it can be decomposed into TFP change elements. These components are i) 

technical change, which measures movements in the production frontier, and ii) efficiency 

change, that measures unit movement relative to the frontier. Efficiency change can be further 

broken down into technical efficiency, mix efficiency, residual mix efficiency, scale efficiency, 

and residual scale efficiency, which collectively analyse movements around the frontier to 

capture economies of scale and scope (Laurenceson and O'Donnell, 2014). Such 

decomposition can be useful from the perspective of policy and regulation, with the effect of 

controls on WaSCs being identifiable through TFP decomposition analysis, enabling better 

decision-making (Wen et al., 2018).  
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Although the HMPI has many positive attributes, it has thus far had limited use in applied 

research, particularly within the water sector, with just Molinos-Senante et al. (2016) using it 

to study wastewater treatment plants. Meanwhile, TFP has been assessed in the water sector 

with other methods. For example, Guerrini et al. (2018), Molinos-Senante et al. (2014), 

Molinos-Senante et al. (2019), Sala-Garrido et al. (2018) all utilise the Luenberger or 

Luenberger-Hicks-Moorsteen to analyse areas of the water sector from water companies 

directly to treatment plants. Even within other sectors such as banks, agriculture, 

manufacturing, energy and ports, the use of HMPI has not been common, as Medal-Bartual 

et al. (2016) and Mohammadian and Rezaee (2020) document.  

The aims of this paper were three-fold. Firstly, to analyse the applicability of assorted HMPI 

variable configurations, then to assess how differing approaches affect results and identify the 

best variable approach for a comprehensive sustainability evaluation. Secondly, to investigate 

the productivity change on a sample of UK WaSCs over a six-year period using the variable 

configuration for sustainability analysis found in the first aim. Finally, to disaggregate results 

for individual companies and enable an investigation of areas in which they can improve – 

informed by TFP constituents. This study contributes to the current body of literature by 

utilising a method not widely applied in the water sector to assess the optimal routes to 

measure efficiency in a holistic sustainability context. Additionally, it provides an insight to TFP 

change and potential avenues for improvement for UK WaSCs and the sector as a whole. The 

findings and methods are of use to water company decision-makers and regulators, allowing 

identification of areas of improvement, effectiveness of their operations and potential 

collaborators for sharing of best practice. 

 

 Methodology 

 The Hicks-Moorsteen Productivity Index 

The Hicks-Moorsteen Productivity Index is defined as a ratio of aggregate output quantity over 

aggregate input quantity index (Bjurek et al., 1998). A major advantage of HMPI over other 
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productivity methods is that a choice between input or output orientation is not required since 

the approach conducts a simultaneous orientation of input and output. This is due to the 

combination of output and input quantity indices using the Shephard output and input distance 

functions (O’Donnell, 2011). 

Under the assumption of each WaSC using a vector of M inputs 𝑥 (𝑥1, 𝑥2, …, 𝑥𝑀) to produce 

a vector of S outputs 𝑦 = (𝑦1, 𝑦2, …, 𝑦𝑆), the output and input distance functions are defined 

thus (Shephard, 1953):  

𝐷𝑡
𝑜 (𝑥, 𝑦) =

𝑚𝑖𝑛
𝛿

 {𝛿 > 0 ∶ (𝑥,
𝑦

𝛿⁄ )𝜀𝑇𝑡}       (1) 

𝐷𝑡
𝑖 (𝑥, 𝑦) =

𝑚𝑖𝑛
𝜌

 {𝜌 > 0 ∶ (𝑥
𝜌,⁄ 𝑦)𝜀𝑇𝑡}       (2) 

Where 𝑇𝑡 denotes production possibilities set at period-𝑡. 𝐷𝑡
𝑜 (𝑥, 𝑦) symbolises the output 

distance function and evaluates the inverse of the largest radial expansion of the output vector, 

which is achievable, given the input vector. Conversely, 𝐷𝑡
𝑖 (𝑥, 𝑦) denotes the input distance 

function and evaluates the largest radial contraction of the input vector attainable while fixing 

the output vector (Epure et al., 2011). 

For a base period 𝑡, Bjurek et al. (1998) defined HMPI as:  

𝐻𝑀𝑃𝐼𝑇 (𝑡)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡) =
[𝐷𝑇(𝑡)

𝑜 (𝑥𝑡,𝑦𝑡) 𝐷𝑇(𝑡)
𝑜⁄ (𝑥𝑡,𝑦𝑡+1)]

[𝐷𝑇(𝑡)
𝑖 (𝑥𝑡,𝑦𝑡) 𝐷𝑇(𝑡)

𝑖⁄ (𝑥𝑡+1,𝑦𝑡)] 
       (3) 

For a base period 𝑡 + 1, HMPI is defined as: 

𝐻𝑀𝑃𝐼𝑇 (𝑡+1)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡) =
[𝐷𝑇(𝑡+1)

𝑜 (𝑥𝑡+1,𝑦𝑡) 𝐷𝑇(𝑡+1)
𝑜⁄ (𝑥𝑡+1,𝑦𝑡+1)]

[𝐷𝑇(𝑡+1)
𝑖 (𝑥𝑡,𝑦𝑡+1) 𝐷𝑇(𝑡+1)

𝑖⁄ (𝑥𝑡+1,𝑦𝑡+1)] 
      (4) 

A geometric mean of the HMPI for base period 𝑡 and 𝑡 + 1 yields: 

𝐻𝑀𝑃𝐼𝑇(𝑡),   𝑇(𝑡+1) (𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡, 𝑦𝑡) =  

[𝐻𝑀𝑃𝐼𝑇(𝑡)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡)  ×  [𝐻𝑀𝑃𝐼𝑇(𝑡+1)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡)]1/2   (5) 
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An asset of HMPI is its classification into technical potential (TECH) and relative efficiency 

(TFPE) change, along with breakdown of TFPE into various components. TECH indicates a 

shift in the efficiency production frontier, advancements of which illustrate expansion in 

production possibilities (Fare and Grosskopf, 1996). TFPE measures the movement of units 

(WaSCs) away or towards production frontier and is regarded as a catching up index (Maziotis 

et al., 2015). The indication being that TFPE involves the capacity of WaSCs to be managed 

with the best operational and corporate practices. TFP then, is the product of TECH and TFPE 

(O’Donnell, 2011): 

𝑇𝐹𝑃𝑖𝑡 =  𝑇𝐸𝐶𝐻𝑖𝑡  ×  𝑇𝐹𝑃𝐸𝑖𝑡        (6) 

O’Donnell (2008) devised the breakdown of TFPE into its drivers, using two production 

frontiers as references. The first, mix-restricted production frontier has the output or input sets 

held fixed. The second is the unrestricted production frontier, which has variable output and 

input sets. Established on these two frontiers, whilst under an input-orientation, the sub-indices 

for TFPE are defined by O’Donnell (2014) in Table 1. 

 

Table 1. Descriptions and explanations to the sub-indices of total factor productivity efficiency change, 

adapted from the works of O’Donnell (2008) and O’Donnell (2014). 

TFPE 
sub-indices 

Description 

Input-oriented 
Technical 
Efficiency (ITE) 

Measures the difference between the observed and maximum TFP possible, while keeping 
the input mix, output mix and output level fixed. This concept is exhibited in Figure 1, where 
the curve passing through points B and D is the frontier of a mix‐restricted production 

possibilities set. The production possibilities set is mix‐restricted in the sense that it only 
contains input and output aggregate vectors that can be written as scalar multiples of the 
input and output vectors at point A. ITE is thus a measure of the difference in TFP at points 

A and B: ITE0  = tan a /tan b. 

Input-oriented 
Scale Efficiency 
(ISE) 

Assesses the difference between TFP at a technically efficient point and maximum TFP 
possible while holding the input and output mixes fixed, but allowing the amounts to 
change. This measure of efficiency is represented in Figure 1 as a movement from point B 

to point D: ISE0 = tan b /tan d. 
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Residual Mix 
Efficiency (RME) 

Evaluates the contrast between TFP on a mix-restricted frontier point and maximum TFP 
possible when input and output mixes (and levels) can vary. This is illustrated in Figure 1 as 

a movement from point D to point E: RME0 = tan d /tan e. The curve passing through E is the 
frontier of an unrestricted production possibilities set (unrestricted meaning there are no 
restrictions on input or output mix). The term “mix” refers to the movement from point D to E, 
where a movement from an optimal point on a mix‐restricted frontier to an optimal point on a 

mix‐unrestricted frontier occurs, therefore the difference in TFP is essentially a mix‐
effect. The term “residual” is used here because i) this movement may also involve a scale 
change ii) when comparing TFP at point A with TFP at the point of maximum productivity 
(point E), RME is the component that remains after accounting for pure technical and scale 
efficiency effects. 

Input-oriented 
Mix Efficiency 
(IME) 

Analyses the distance between TFP at a technically efficient point on the mix-restricted 
frontier and the maximum TFP possible, while the output level is fixed. This measure of 

efficiency is depicted in Figure 1 as a movement from point B to U: IME0 = tan b /tan u.    

Residual Input-
oriented Scale 
Efficiency 
(RISE) 

Determines the difference between TFP at a technically and mix-efficient point and TFP at 
the point of maximised productivity. The term “scale” is used to reflect the fact that any 
movement around an unrestricted production frontier is a movement from one mix‐efficient 
point to another, so any improvement in TFP is essentially a scale effect.  The term “residual” 
is also used since even though all the points on the unrestricted frontier are mix‐efficient, 
they could still have different input and output mixes.  Therefore, what is essentially a 
measure of scale efficiency may contain a residual mix effect. Residual is further appropriate 
as term here because when decomposing the difference between TFP at the observed point 
A and TFP at the point of maximum productivity E, the residual scale efficiency is the 
component that remains after accounting for pure technical and pure mix efficiency effects. 

RISE is exhibited in Figure 1 as a movement from point B to U: RISE0 = tan u / tan e.   

 

The TFPE is represented in Figure 1 as a movement all the way from point A to point E, 

measured as the difference between observed TFP and maximum TFP. The relationship with 

its components are simplified here: 

𝑇𝐹𝑃𝐸𝑖𝑡 =  𝐼𝑇𝐸𝑖𝑡  ×  𝐼𝑀𝐸𝑖𝑡  ×  𝑅𝐼𝑆𝐸𝑖𝑡       (7) 

𝑇𝐹𝑃𝐸𝑖𝑡 =  𝐼𝑇𝐸𝑖𝑡  ×  𝐼𝑆𝐸𝑖𝑡  × 𝑅𝑀𝐸𝑖𝑡       (8) 

A HMPI >1 indicates an increase in TFP, <1 illustrates a decline in TFP, a result of exactly 1 

demonstrates there was no change in TFP.  
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Figure 1. An input-oriented decomposition of TFPE sourced from O’Donnell (2014). Q represents outputs, X 
depicts inputs, A is observed TFP point, E is maximum productivity, D is the optimal point on a mix-restricted 
frontier, B portrays the technically efficient point on the mix-restricted frontier, and U illustrates the maximum TFP 
possible when output levels are fixed. Further details are within Table 1.  

 

To compute output and input distance functions, and therefore HMPI, there are two 

approaches, parametric and non-parametric methods. Of the parametric methods, stochastic 

frontier analysis (SFA) is the most widely used. The advantage of SFA is that it explains 

random statistical noise and can account for the effects of errors in the data (Parmeter and 

Zelenyuk, 2019). The limitation is that parametric techniques require strong assumptions of 

the functional form (Moutinho et al., 2020). Conversely, non-parametric methods such as data 

envelopment analysis (DEA) use mathematical programming and thus do not need 

specification of the functional frontier (Silva et al., 2017). This is the main advantage over SFA 

and outweighs DEA’s limitations of assuming there are no atypical data observations, making 

it vulnerable to outliers and errors (Cooper et al., 2006). Due to the advantages DEA offers, 

and following O’Donnell (2011), Medal-Bartual et al. (2016), and Molinos-Senante et al., 

(2016), this study utilises DEA to compute HMPI. The input and output distance functions were 
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computed in ‘R’, a statistical computing software with the package ‘productivity’ created by 

Dakpo et al. (2018). 

 

 Data description 

The sample consisted of 12 WaSCs from across the UK, with annual data over the period 

2013-2018. To justly represent the key operations of WaSCs, the choice of inputs and outputs 

is pivotal. To investigate the various approaches to analysing efficiency, different 

configurations of inputs and outputs were evaluated and the justifications for their use are 

outlined in Section 3.1. The inputs used were operational expenditure (OPEX) and total 

expenditure (TOTEX), whereas the diversified outputs were water supplied and wastewater 

treated (combined), self-generated renewable energy, leakage reduction, consumption per 

capita reduction, and customer satisfaction, which is measured by a service incentive 

mechanism (SIM) score out of 100, deployed by OFWAT. Leakage reduction and consumption 

per capita reduction were converted to non-negatives to allow the computation to proceed 

without errors; this was completed by bringing the largest negative up to a value of one, then 

adding the difference from the negative value to one, to all other values. All of the data was 

acquired from company annual reports and is summarised in Table 2. 

The size of the sample, when using DEA, is required to satisfy a minimum size threshold to 

bypass relative efficiency discrimination issues. ‘Cooper’s rule’ is used to gauge this size 

threshold, and specifies the quantity of units must be ≥ max{𝑚 𝑥 𝑠; 3(𝑚 + 𝑠)} where 𝑚 

represents inputs and 𝑠 represents outputs (Cooper et al., 2007). The maximum inputs and 

outputs used in any variable configuration in this study comprised of one input and three 

outputs, therefore Cooper’s rule was followed. Furthermore, one of the advantages of DEA is 

regarded to be its appropriateness with smaller sample sizes (Arjomandi et al., 2015). 

 

Table 2. Summary statistics for the six-year period (2013-2018) analysed for UK WaSCs.   
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 Results and discussion  

 An enquiry into efficiency analysis 

Evaluating the efficiency of water companies can take many forms, with hundreds of indicators 

available to choose from (Berg, 2013). However, in TFP analysis with frontier techniques like 

DEA and SFA, a limited core number of variables are often chosen, since including the 

majority of possible variables is not feasible (Worthington, 2014). Variations of core indicators 

are evaluated and their appropriateness is discussed relative to capturing the key operations 

and responsibilities of water companies in relation to wider sustainability objectives. This was 

conducted through eight repeats of the HMPI model, each with different configurations of 

variables, enabling the exploration of the importance of variable selection when assessing 

productivity. The breakdown of each individual model repeat, including all constituents of 

efficiency and individual company efficiency scores for each year are available in the 

Supplementary Information. 

The most common variable approach to efficiency analysis of water companies in the literature 

comprises of including OPEX and capital expenditure (CAPEX) as inputs, and the volume of 

water supplied and wastewater treated as outputs, whether that is within a single year analysis 

or a multi-year evaluation within productivity (Zschille and Walter, 2014; Maiotis et al., 2015; 

See, 2015). This configuration of inputs and outputs therefore made up the first model run (T-

W in Table 3), displaying an average increase in TFP of 0.86%, solely as a result of efficiency 

increase. This slight increase was anticipated as the mature UK market continues to optimise 

total spending, as supported by Portela et al. (2011) who showed significant productivity 

  Average SD Minimum Maximum 

Inputs Total expenditure (million£) 863 506 288 2,724 

 Operational expenditure (million£) 504 320 143 1,214 

Outputs Water supplied and wastewater treated (Ml/day) 2,613 1,763 725 7,102 

 Self-generated renewable energy (GWh) 98 89 2 387 

 Customer satisfaction (SIM score) 82 5 68 90 

 Leakage reduction (Ml/day) 54 12 1 89 

 Consumption per capita reduction (l/h/day)  11 4 1 22 
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improvements between 1994-2005 using a meta-Malmquist index, before it dropped off until 

2007. Molinos-Senante and Maziotis (2020b) published a similar result using a normalised 

quadratic function, illustrating that the sector increased its productivity annually by 6.1% within 

1993-2016. The TFP increase however did contradict further TFP studies of the UK with 

similar indicators to T-W. Molinos-Senante et al. (2017a) used the Färe-Primont Productivity 

Index and concluded productivity declined by 7.2% during 2001-2008, whilst Molinos-Senante 

et al. (2014) showed the productivity of the UK water industry from 2001 to 2008 reduced by 

11.5% and 12.9% when using the LPI and MPI, respectively. The disparity between studies is 

likely due to differing sample years, methodologies, and the sample itself, since some studies 

included the whole of the UK and others just England and Wales, some studies also contained 

water only companies and WaSCs, whilst others just WaSCs. Although this change in sample 

size is not large, it can be significant when the original sample size is small as is the case 

within the UK (Zhang and Bartels, 1998). The drawback to the T-W variable configuration is 

that it does not capture other elements that a water company provides and for which it is 

responsible. 

Table 3. Summarised TFP, TFPE and TECH* change of various variable configurations for UK water and 

sewage companies for 2014-18. Average changes are based on the mean percentage changes for all years and 

for all companies. 

Model Inputs Outputs 
dTFP 

average 
dTECH 
average 

dTFPE 
average 

T-W TOTEX Water supplied and wastewater treated +0.86% -0.39% +1.37% 

T-WRC TOTEX 
Water supplied and wastewater treated, renewable 
energy generation, customer satisfaction 

+1.82% -0.01% +2.06% 

T-RC TOTEX Renewable energy generation, customer satisfaction +2.35% -1.24% +3.91% 

T-LC TOTEX Leakage reduction, consumption per capita reduction +4.86% +0.29% +5.14% 

O-W OPEX Water supplied and wastewater treated -3.15% -3.85% +0.79% 

O-WRC OPEX 
Water supplied and wastewater treated, renewable 
energy generation, customer satisfaction 

-1.15% -2.43% +2.06% 

O-RC OPEX Renewable energy generation, customer satisfaction -0.90% -2.78% +2.85% 

O-LC OPEX Leakage reduction, consumption per capita reduction +1.22% -2.41% +5.58% 

*TFP is total factor productivity; TECH is technical change; TFPE is efficiency change 

 

Customer satisfaction and self-generated renewable energy were identified as key indicators 

to incorporate into the analysis, which along with the T-W variables (Table 3), make up T-

WRC. Customer satisfaction was selected as it is the ultimate measure of success for a utility 
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provider and, representing social aspects of sustainability, is a fundamental parameter for 

companies to prosper and avert regulatory sanctions. The more environmentally focussed 

self-generated renewable energy was chosen since water companies are a major consumer 

of energy, as noted in Section 1. Therefore, reducing their impact on the national grid supply 

and the associated greenhouse gas emissions is a responsibility that is incorporated into the 

second variable configuration. T-WRC resulted in a larger TFP increase of 1.82% between 

2014 and 2018, compared to T-W, again due to the increases in TFPE. The progress relative 

to T-W was expected since customer satisfaction and self-generated renewable energy 

consistently increased throughout the sample period by 1.24% and 28% on average year-on-

year, respectively. Although T-WRC does cover more operational outputs for water 

companies, it has a limitation in the form of the main service output indicator: water supplied 

and wastewater treated. Water companies have been tasked to reduce leakage in their supply 

network by 15% by 2025, and 50% by 2040 (EFRA, 2018) to help future-proof themselves 

against climate change, which could reduce the availability of abstraction water (Dallison et 

al., 2020; Gov.UK, 2020a), and to better manage water resources. Companies take active 

measures to do this by investing in leakage reduction and conducting education campaigns to 

reduce consumption; e.g., Manouseli et al. (2019) showed active users within such schemes 

reduced their consumption by approximately 15%. Therefore, having water produced and 

wastewater treated as outputs in a TFP model may mask efficiency by treating higher water 

consumption, and lower investment in consumption (leak) reduction, as efficient. This would 

inaccurately portray companies that have invested in leakage reduction and public campaigns 

to consume less water as being less efficient.  

Thus, to avoid this potential distortion, the T-RC model consisted of renewable energy self-

generation and customer satisfaction as the outputs, whilst keeping TOTEX as the input. This 

displayed a TFP increase of 2.35% between 2014 and 2018, with an increase of 3.91% for 

TFPE. To explore more areas that companies are prioritising and attempting to improve upon, 

T-LC has leakage reduction and consumption per capita reduction as outputs. Typically, 
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consumption per capita is not considered an output within evaluations of water companies 

however, since it has been shown that companies can influence it, it is included here. This 

variable configuration resulted in the largest average TFP increase between 2014 and 2018 

of 4.86%, which, along with showing how companies have improved more holistically, also 

exemplifies how efficiency analysis with water supplied and wastewater treated as an output 

could distort results with respect to sustainable business objectives. Collectively, models T-

RC and T-LC demonstrate how much WaSCs in the UK have improved non-economic aspects 

of sustainability between 2013/14-2018/19. 

The first four models were all calculated with TOTEX as an input, however, CAPEX being a 

part of this input had the potential to skew results as the benefits of capital investments are 

often not shown immediately (Abbott and Cohen, 2009). Model configurations O-W, O-WRC, 

O-RC and O-.LC therefore were all repeats of the first four variable configurations, but 

contained just OPEX as their inputs. As Table 3 illustrates, the OPEX versions of the models 

all resulted in the companies being less efficient compared to the TOTEX versions with O-W, 

O-WRC and O-RC actually presenting negative results, indicating that the sample has 

declined in efficiency. One possibility for these results is that CAPEX is more efficient than 

OPEX for companies within the sample and subsequently masked its inefficiency within 

TOTEX, however, reductions in CAPEX whilst also improving significantly in self-generated 

renewable production and leakage reduction seems unlikely. An alternative possibility is that 

CAPEX from the time preceding the sample period into the base year was higher to pay for 

infrastructure represented in outputs in these models such as leakage reduction, renewable 

energy production and customer satisfaction to a lesser extent. From then, a fall in CAPEX 

could have followed, so within TOTEX as an input, it was low compared to the now increasing 

outputs brought about by prior spending. If this is the case, then incorporating CAPEX 

essentially creates efficiency lags that must be accounted for, or at least acknowledged, when 

drawing conclusions from results. To evade this potential efficiency lag, studies with a sample 

over a longer period could adopt a five-year rolling average, since shorter periods could 
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generate perverse incentives to cut investments in the short term if the efficiency lag is not 

considered in the research outputs. Some studies opt to include length of water mains as a 

proxy to represent capital (De Witte and Marques, 2010; Ananda, 2014; Molinos-Senante et 

al., 2018), which negates the issue raised here however, that comes with its own issues of 

accuracy when acting as a proxy as demonstrated by Walker et al. (2020). Whilst these results 

have been attempted to be explained by the role of CAPEX, there are the direct ramifications 

of OPEX too. Inflation rate increased at an average of 1.7% per year over the sample period 

(Office for National Statistics, 2020a) and the energy price index also raised by an average of 

3.19% per year for electricity and 8.44% for gas (Gov. UK, 2020b). Furthermore, the water 

retail price index increased by an average of 2.44% during the same period (Office for National 

Statistics, 2020b). These statistics combined likely had at least a small impact on the relatively 

lower productivity compared to TOTEX and further highlights the advantages of companies 

producing their own renewable energy.  

The assorted inputs and outputs for the model variable configurations yielded changes in 

perceived productivity for the whole water sector. As Table 4 shows, company-level TFP also 

fluctuated. There was a disparity between the first four that used TOTEX as the input and the 

last four models that used OPEX as the input, which was seen in the overall sector trends in 

Table 3, too. For example, companies 7 and 8 were ranked 2nd and 1st in the majority of the 

TOTEX models, but dropped to below average and alternate between 4th and 5th in the OPEX 

models, respectively. Furthermore, company 12 went from generally below average rankings 

in the TOTEX models, with exception of model T-LC where it ranked 2nd, to ranking 1st in the 

latter four models. Company 9 appears to have fallen behind when the more sustainability-

orientated indicators were introduced. It ranked 4th in T-W however, dropped to 10th-12th in 

models T-WRC, T-RC and T-LC when indicators such as self-generated renewable energy, 

customer satisfaction, leakage reduction and consumption per capita reduction were 

implemented. This trend was then replicated in the OPEX models, although to a lesser extent. 

Company 5 performed poorly throughout whether that was using OPEX or TOTEX as the 
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input, suggesting that they have neglected all aspects of sustainability relative to the other 

companies and have held back the TFP progress for the whole sample. These results 

collectively show how choosing the correct variables to represent a specific desired objective 

is critical and how small variations in variable selection or definition could significantly skew 

benchmarking attempts. A larger sample would have enabled more indicators to be evaluated, 

giving a more holistic representation of sustainability however, with the limited indicators 

allowed by the sample, key sustainable parameters are included in this study.   

Table 4. Ranking 12 WaSCs for the eight model variable configurations, based on the TFP scores. 

Company 
Total Factor Productivity (TFP) Rankings 

T-W T-WRC T-RC T-LC O-W O-WRC O-RC O-LC 

1 8th  7th  8th  5th  11th  11th  11th  5th  

2 12th  11th  10th  8th  6th  7th  8th  2nd  

3 9th  5th  3rd  6th  8th  8th  3rd  6th  

4 3rd  3rd  5th  4th  10th  10th  10th  3rd  

5 11th  12th  11th  10th  12th  12th  12th  12th  

6 6th  6th  6th  11th  7th  2nd  2nd  11th  

7 2nd  2nd  2nd  3rd  9th  9th  7th  8th  

8 1st  1st  1st  1st  4th  5th  5th  4th  

9 4th  10th  12th  12th  2nd  4th  9th  10th  

10 5th  4th  4th  7th  3rd  3rd  4th  7th  

11 10th  9th 9th  9th  5th  6th  6th  9th  

12 7th  8th  7th  2nd  1st  1st  1st  1st  

 

 Water market efficiency over time  

The model variable configuration to analyse the TFP change of UK WaSCs in the following 

sections was model T-WRC in Table 3. T-WRC was selected because it included key 

indicators that cover all aspects of sustainability. TOTEX was incorporated as it was deemed 

that CAPEX should be represented because ultimately, it is an important component of 

company spending that can be associated with significant (lagged) technical efficiency and 

sustainability improvements. Furthermore, the UK water sector now actively reports under 

TOTEX, with the regulator OFWAT (2018) commenting that the switch to TOTEX has removed 

a regulatory barrier, enabling additional efficiencies and innovation. Any potential time lags in 

efficiency results are a limitation of the research in the upcoming sections but will be 

appreciated within the enquiry of the results. Water supplied and wastewater treated was 
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chosen as it is the main service output of water companies, representing their whole reason 

for operating, therefore analysing efficiency without it cannot be considered holistic 

sustainability or otherwise.  

Despite the limitations to some of the indicators discussed in Section 3.1, they are the most 

appropriate grouping considering the data available and sample size; furthermore, the results 

still give a good indication of how companies are performing within a more comprehensive 

sustainability efficiency assessment. Productivity change was deemed to increase when TFP 

and constituent scores were >1 and to decrease when estimates were <1. 

The average TFP change was positive with a value of 1.018 over the sample period as shown 

in Table 5, which indicates an average increase in productivity of 1.8%, however, this was the 

consequence of 2015/16 having a large TFP estimate compared to other years of 1.23 (23%). 

The increase was large enough for the overall average productivity change to be positive, 

despite all other years displaying a decline in TFP. This was unexpected as 2015 was the 

beginning of the five-year cycle consisting of asset management plan 6, which was to be a 

period of increased investment (OFWAT, 2014), however, the year displayed a TOTEX decline 

of 13.17% compared to the previous year, whereas increased spending followed in the next 

four years. It is likely that the TOTEX decline in 2015 was a major driver of the increased 

efficiency, although self-generated renewables increased by 20.62%, whilst customer 

satisfaction improved by 1.02% and water supplied and wastewater treated declined by 

1.95%. The limitation of confining productivity results to yearly values as opposed to extended 

blocks of time is exemplified here, but is applied in this research and many other pieces of 

work due to the limited temporal sample range. A larger increase in TFP was anticipated due 

to the inclusion of self-generated renewable energy as an output, since this increased 

dramatically in the sample period (28% average year-on-year). It is possible that the 

renewable energy increase masked some other inefficiency, which appears to be the case 

when examining model T-W within Table 3. This mix of variables displayed a TFP average 

increase of 0.86%, whilst containing TOTEX as the input and water supplied and wastewater 
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treated as the output. This was approximately 1% lower compared to the more holistic model 

variable configuration used in this section, indicating customer satisfaction and self-generated 

renewable energy production attributed to increased TFP. Another reason the increase was 

not as large as anticipated appeared to be a result of TOTEX increasing nearly as much as 

their outputs during the sample period, with an average year-on-year increase of 3.01%. 

These combined with the limitations in using water supplied and wastewater treated as an 

output discussed in Section 3.1 likely limited larger TFP increases. Ultimately, there was a 

positive average TFP change and this should be viewed favourably, especially when 

companies are improving renewable energy generation and customer service, in addition to 

the core operations of providing high standards of drinking water and treating wastewater 

responsibly. 

 

Table 5. Summarised TFP change and its components* for UK water and sewage companies.  

Year dTFP dTECH dTFPE dITE dISE dRISE dRME 

2014/15 0.996 0.995 1.002 1.091 0.935 0.925 0.993 

2015/16 1.230 1.057 1.176 0.987 1.036 1.194 1.158 

2016/17 0.952 0.945 1.006 0.936 1.053 1.088 1.031 

2017/18 0.945 0.958 0.987 1.026 1.004 0.968 0.965 

2018/19 0.969 1.044 0.931 0.990 1.007 0.941 0.935 

Average 1.018 1.000 1.021 1.006 1.007 1.023 1.017 
*TFP is total factor productivity; TECH is technical change; TFPE is efficiency change; ITE is input-oriented technical 
efficiency; ISE is input-oriented scale efficiency; RISE is residual input-oriented scale efficiency; RME is residual mix 
efficiency. 

 

The main driver of the TFP positive change was TFPE, which averaged at 2.1%, whilst TECH 

remained at an unchanging 1. The indication being that from 2014-18, the production frontier 

remained at the same level, however, companies on average have moved 2.1% closer to the 

frontier. This was again largely due to 2015/16, which displayed an increase in TFPE of 17.6%, 

outweighing the decreases in the last two years of 1.3% and 6.9%, illustrated in Figure 2. The 

findings suggest that capital investment remained steady relative to increased outputs during 

the sample years, whereas management of infrastructure and resources improved marginally. 

Therefore, to improve TFP, WaSCs must invest more in impactful capital projects compared 

to their 9.15% year-on-year average reduction, if they are to improve the outputs used in the 



 22 

mode further; these solutions could be updated technologies at treatment plants, renewable 

energy installations, and extra customer-facing staff capacity. The extra capital enterprises 

may then allow the expert personnel that increased TFPE to propel efficiency on even more. 

Since the CAPEX decline at least partially drives positive efficiency here, it is possible that in 

future years there could be a negative legacy effect, where future efficiency evaluations show 

a decline because of their higher spending relative to the period covered in this study. 

An advantage of the HMPI is that TFPE can be split up into component parts. A WaSC is 

deemed efficient if it has an ITE score of one as this indicates the company is on the efficient 

production frontier, less than one and it is under the frontier and inefficient. A company with 

an ITE score equal to one, whilst displaying a RISE of less than one, remains on the efficient 

production frontier however, it is considered relatively unproductive. Table 5 displays that ITE 

increased marginally by 0.6% on average, while RISE increased by 2.3%, showing both 

technical efficiency and scale efficiency components positively contributed to TFPE. Further 

constituents of TFPE namely, ISE and RME both on average increased by 0.7% and 1.7%. 

The scale efficiencies imply the UK water sector is moving closer to its technically optimal 

scale in regards to output. In 2015/16, the largest TFP and TFPE changes of +23.0% and 

+17.6% occurred, respectively, had a negative ITE score of 1.3%. Despite this, large 

productivity gains in RISE and RME of 19.4% and 15.0% ensured the year had such a large 

TFP increase. Collectively, these results suggest that economies of scale and scope 

contributed positively to the TFPE result, allowing WaSCs to move to closer the efficiency 

frontier by improving in diversified outputs and optimising treatment plant sizes relative 

distribution area.  
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Figure 2. The change in total factor productivity (TFP), TFP efficiency change (TFPE) and TFP technical change 
(TECH) for all UK water and sewage companies as a collective for 2014-2018.  

 

 Company-level efficiency over time 

Figure 3 displays that exactly half of the sample exhibited a positive TFP value, furthermore 

the TFP standard deviation was 0.043 (Table 6), indicating that the sample was relatively 

homogenous. This was expected to an extent since the UK has a mature water market, having 

been consolidated after the Second World War then eventually privatised in 1989 and 

regulated strictly ever since (OFWAT, 2020). The largest TFP gains were from company 8, 

which had increased productivity by 10.9%. 
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Figure 3. The change in total factor productivity (TFP), TFP efficiency change (TFPE) and TFP technical change 

(TECH) for all individual UK water and sewage companies for 2014-2018.  

Table 6 shows that the increase was due to a large increase in TFPE of 13.8%, suggesting 

that the management of existing resources during this period significantly improved, although 

this is likely also due to capital projects from before the sample period coming online. 

Conversely, company 5 had the largest average decline in TFP during 2014-18 of -3.1%, 

struggling slightly more through optimising capital investment than through the management 

of resources. Companies 5 and 8 did have an almost identical average TECH decline, showing 

effective capital investment of the most improved company was as poor as the worst 

performing company. This conveys that company 8 can still considerably improve, despite 

being the top performer. It should be noted that not all companies necessarily operate in equal 

conditions, with exogenous factors such as rurality, water source and population density, to 

just name a few factors, all affecting their efficiencies (Walker et al., 2019). Although each 

company will have slightly different operational and corporate conditions, this exemplifies 

where communication and sharing of best practices can dramatically improve productivity. 

The current limitation to this is that the UK sector is privatised, and many efficiency gains are 

made through ‘commercially sensitive’ means.  
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The operational conditions within the UK are fairly uniform however, even minor variances in 

certain factors can affect renewable energy feasibility for companies, influencing their financial 

and energy payback times (Murphy and McDonnell, 2017). For example, wind speed averages 

and peaks are much higher in coastal areas and the north of the UK, ranging from an average 

5-13 m/s in 1981-2010, whereas inland and in the south largely averages at 1.5-2.6 m/s (Met 

Office, 2020). A further example is in solar irradiance; Burnett et al. (2014) converted gridded 

sunshine duration to solar irradiance in order to map it for the UK within 1961-1990, which 

showed the south for average annual irradiance ranged from 90.9 to 126 Wm-2, whilst the 

north had a range of 71.8-107.1. Additionally, topographical gradients vary throughout the 

whole of the UK (Topographic map, 2020), significantly altering the dynamics and viability of 

recovering energy from hydropower (McNabola et al., 2014). The one major renewable energy 

source that is uniform for all the companies in the sample is the production of biogas from 

wastewater, although the quantities will differ depending on populations, and transport 

distance (and associated costs) to centralised plants will vary with population densities (cities 

vs. rural, etc.). A further major barrier to renewable energy projects is land cost, which has 

disparities within the UK, generally being cheaper in the north and the south (Hall and Tewdwr-

Jones, 2019). Collectively, this means generating renewable energy within the UK is not equal 

for each water company; therefore, future efficiency studies could enhance their analysis by 

considering this, perhaps integrating a ‘percentage of possible renewable energy utilised’ 

based on natural resources and economic thresholds.  

 

Table 6. Average TFP change and its components* for UK water and sewage companies 2014-18.  

Company dTFP dTECH dTFPE dITE dISE dRISE dRME 

1 0.998 0.979 1.022 1.012 1.019 1.045 1.038 

2 0.971 0.976 0.996 0.978 1.004 1.029 1.023 

3 1.023 1.042 0.979 1.000 1.000 0.979 0.979 

4 1.047 1.042 1.004 1.000 1.000 1.004 1.004 

5 0.969 0.978 0.993 0.956 0.995 1.037 1.047 

6 1.016 1.019 1.011 1.000 1.000 1.011 1.010 

7 1.085 1.032 1.036 1.000 1.033 1.036 1.003 

8 1.109 0.980 1.138 1.080 1.027 1.077 1.046 
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9 0.977 1.018 0.963 0.997 0.999 0.966 0.967 

10 1.036 0.977 1.068 1.033 1.005 1.025 1.017 

11 0.990 0.979 1.013 0.994 0.998 1.029 1.028 

12 0.997 0.977 1.024 1.025 1.005 1.041 1.037 

Average 1.018 1.000 1.021 1.006 1.007 1.023 1.017 

SD 0.043 0.027 0.044 0.029 0.012 0.029 0.024 

*TFP is total factor productivity; TECH is technical change; TFPE is efficiency change; ITE is 
input-oriented technical efficiency; ISE is input-oriented scale efficiency; RISE is residual input-
oriented scale efficiency; RME is residual mix efficiency. 

 

Technical change improved for five out of twelve WaSCs, with companies 3 and 4 leading with 

the way, improving by 4.2% each. This means that these companies have advanced regarding 

their technological condition, a probable result from long-term strategic planning and capital 

investment. However, when assessing the TOTEX year-on-year average, it was evident for 

these WaSCs that their change in spending was modest and comparable to their peers, 

increasing by 2.53% and 4.72%, respectively. This shows the difficulty in analysing the 

efficiency of capital expenditure as discussed in section 3.1. It should, however, be noted that 

the efficiency is in relevance to the outputs, and so it is probable that their capital spending 

was more optimised than other companies in the sample. Concerning efficiency change, eight 

out of twelve companies progressed their operational systems and procedures, with company 

8 improving by 13.8%, the most of all the WaSCs.   

The components of efficiency change, which are displayed in Table 6, can offer even more of 

an insight into productivity. As the previous section noted, an ITE score of 1 indicates the 

WaSC is on the production frontier, whilst a score of less than 1 for RISE categorises the 

WaSC as relatively unproductive. Eight companies (66%) displayed an ITE score of 1 or higher 

and therefore positively shifted the efficiency production frontier or remained on it. Although 

these improvements were observed, company 3 still reduced in TFPE due to it remaining 

relatively unproductive, as indicated by the decline in RISE. Only two companies, 3 and 9 did 

not match the overall positive trend for RISE and RME, whilst just companies 5, 9 and 11 

presented negative results for ISE. This indicates that the majority of UK WaSCs had positive 

economies of scale and scope with TFP largely being driven by improved operational practices 
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of existing infrastructure and resources. Although collectively the progress of TFP, TFPE and 

its constituents were small, continuing to improve in an already largely efficient sector is 

positive, especially within a framework evaluating more holistic sustainability outputs. 

Individual analysis at this scope further highlights how sharing best practice between the 

companies featured on different ends of the various components of TFP results could be 

advantageous, with lessons being relevant for companies outside of the region, too. 

 Conclusions 

The objectives of this research were to utilise the Hicks-Moorsteen Productivity Index as a 

framework to evaluate the efficiency (as temporally applied TFP) of water service companies 

in the UK between 2013 and 2018, exploring the influence of input and output indicator 

selection on the representation of critical sustainability outcomes. In addition to more 

traditional indicators such as TOTEX and Water supplied and wastewater treated, the 

following indicators of sustainable performance were used: self-generated renewable energy, 

customer satisfaction, leakage reduction, and per capita consumption reduction, which were 

interchangeably utilised within eight model variable approaches. The study showed novelty by 

applying and comparing a mix of indicators across the sustainability spectrum, particularly 

poignant within the computation of the seldom-used HMPI on a UK sample of water 

companies. The choice of variables had a major influence on the ranking and perceived 

operational efficiency among WaSCs. CAPEX (used as part of TOTEX) for example, is an 

important input for tracking company operations however; possible associated efficiency 

benefits can lag investment, leading to apparent poor short-term performance following capital 

spending. A solution is to benchmark over longer periods where possible, implementing a 5-

year rolling average or similar. Furthermore, water supplied and wastewater treated was 

deemed an unconstructive output from a sustainability perspective since it contradicts efforts 

to improve sustainability through reduced leakage and consumption per capita. Alternatives 

should be assessed in future research; possible options are Customer satisfaction and water 

quality measures. Despite these limitations, TOTEX and water supplied and wastewater 
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treated were used alongside customer satisfaction and self-generated renewable energy for 

a holistic sustainability assessment that captures decisive company activities within a small 

sample. They indicated the UK water sector has improved in productivity by 1.8% on average 

for 2014-18 and still had room for improvement, as a technical decline was evident for both 

the best and worst performers. Collectively the sample’s production frontier was unchanged 

but on average companies moved 2.1% closer to it, and further decomposition of productivity 

revealed this was due to improvements in economies of scale and scope with residual input-

oriented scale efficiency and residual mix efficiency expressing increases of 2.3% and 1.7%, 

respectively. Careful selection of appropriate input and output variables, integrated within an 

appropriate productivity framework, is critical to align with sustainability objectives and to 

target future investment and regulation within the water sector. The largest limitation within 

this study was the small sample size, which restrained the quantity of indicators that could be 

used however, core sustainability indicators were still included and future studies can build 

upon this, particularly within the framework of the HMPI as was successfully applied here. 

Collectively, these outcomes can contribute to implications on policy, regulation, water 

management, and future research through displaying a process to assess the optimal routes 

to measure efficiency in a holistic sustainability context, enabling identification of areas of 

improvement, effectiveness of their operations, and potential collaborators for sharing of best 

practice.  
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