216 research outputs found

    On preventive blood pressure self-monitoring at home

    Get PDF
    Self-monitoring activities are increasingly becoming part of people’s everyday lives. Some of these measurements are taken voluntarily rather than being referred by a physician and conducted because of either a preventive health interest or to better understand the body and its functions (the so-called Quantified Self). In this article, we explore socio-technical complexities that may occur when introducing preventive health-measurement technologies into older adults’ daily routines and everyday lives. In particular, the original study investigated blood pressure (BP) measurement in non-clinical settings, to understand existing challenges, and uncover opportunities for self-monitoring technologies to support preventive healthcare activities among older adults. From our study, several important aspects emerged to consider when designing preventive self-monitoring technology, such as the complexity of guidelines for self-measuring, the importance of interpretation, understanding and health awareness, sharing self-monitoring information for prevention, various motivational factors, the role of the doctor in prevention, and the home as a distributed information space. An awareness of these aspects can help designers to develop better tools to support people’s preventive self-monitoring needs, compared to existing solutions. Supporting the active and informed individual can help improve people’s self-care, awareness, and implementation of preventive care. Based on our study, we also reflect on the findings to illustrate how these aspects can both inform people engaged in Quantified Self activities and designers alike, and the tools and approaches that have sprung from the so-called Quantified Self movement

    The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis

    Get PDF
    Background:To investigate small-nucleolar RNAs (snoRNAs) as reference genes when measuring miRNA expression in tumour samples, given emerging evidence for their role in cancer.Methods:Four snoRNAs, commonly used for normalisation, RNU44, RNU48, RNU43 and RNU6B, and miRNA known to be associated with pathological factors, were measured by real-time polymerase chain reaction in two patient series: 219 breast cancer and 46 head and neck squamous cell carcinoma (HNSCC). SnoRNA and miRNA were then correlated with clinicopathological features and prognosis.Results:Small-nucleolar RNA expression was as variable as miRNA expression (miR-21, miR-210, miR-10b). Normalising miRNA PCR expression data to these recommended snoRNAs introduced bias in associations between miRNA and pathology or outcome. Low snoRNA expression correlated with markers of aggressive pathology. Low levels of RNU44 were associated with a poor prognosis. RNU44 is an intronic gene in a cluster of highly conserved snoRNAs in the growth arrest specific 5 (GAS5) transcript, which is normally upregulated to arrest cell growth under stress. Low-tumour GAS5 expression was associated with a poor prognosis. RNU48 and RNU43 were also identified as intronic snoRNAs within genes that are dysregulated in cancer.Conclusion:Small-nucleolar RNAs are important in cancer prognosis, and their use as reference genes can introduce bias when determining miRNA expression. © 2011 Cancer Research UK All rights reserved

    Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells

    Get PDF
    BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs) in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs) but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA) repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA) gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50%) and homologous recombination frequency (>10(-5)) were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs

    Are ribosomal DNA clusters rearrangement hotspots? A case study in the genus Mus (Rodentia, Muridae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in comparative genomics have considerably improved our knowledge of the evolution of mammalian karyotype architecture. One of the breakthroughs was the preferential localization of evolutionary breakpoints in regions enriched in repetitive sequences (segmental duplications, telomeres and centromeres). In this context, we investigated the contribution of ribosomal genes to genome reshuffling since they are generally located in pericentromeric or subtelomeric regions, and form repeat clusters on different chromosomes. The target model was the genus <it>Mus </it>which exhibits a high rate of karyotypic change, a large fraction of which involves centromeres.</p> <p>Results</p> <p>The chromosomal distribution of rDNA clusters was determined by <it>in situ </it>hybridization of mouse probes in 19 species. Using a molecular-based reference tree, the phylogenetic distribution of clusters within the genus was reconstructed, and the temporal association between rDNA clusters, breakpoints and centromeres was tested by maximum likelihood analyses. Our results highlighted the following features of rDNA cluster dynamics in the genus <it>Mus</it>: i) rDNA clusters showed extensive diversity in number between species and an almost exclusive pericentromeric location, ii) a strong association between rDNA sites and centromeres was retrieved which may be related to their shared constraint of concerted evolution, iii) 24% of the observed breakpoints mapped near an rDNA cluster, and iv) a substantial rate of rDNA cluster change (insertion, deletion) also occurred in the absence of chromosomal rearrangements.</p> <p>Conclusions</p> <p>This study on the dynamics of rDNA clusters within the genus <it>Mus </it>has revealed a strong evolutionary relationship between rDNA clusters and centromeres. Both of these genomic structures coincide with breakpoints in the genus <it>Mus</it>, suggesting that the accumulation of a large number of repeats in the centromeric region may contribute to the high level of chromosome repatterning observed in this group. However, the elevated rate of rDNA change observed in the chromosomally invariant clade indicates that the presence of these sequences is insufficient to lead to genome instability. In agreement with recent studies, these results suggest that additional factors such as modifications of the epigenetic state of DNA may be required to trigger evolutionary plasticity.</p

    Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.

    Get PDF
    Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed

    The ‘Exposed’ Population, Violent Crime in Public Space and the Night-time Economy in Manchester, United Kingdom

    Get PDF
    The daily rhythms of the city, the ebb and flow of people undertaking routines activities, inform the spatial and temporal patterning of crime. Being able to capture citizen mobility and delineate a crime-specific population denominator is a vital prerequisite of the endeavour to both explain and address crime. This paper introduces the concept of an exposed population-at-risk, defined as the mix of residents and non-residents who may play an active role as an offender, victim or guardian in a specific crime type, present in a spatial unit at a given time. This definition is deployed to determine the exposed population-at-risk for violent crime, associated with the night-time economy, in public spaces. Through integrating census data with mobile phone data and utilising fine-grained temporal and spatial violent crime data, the paper demonstrates the value of deploying an exposed (over an ambient) population-at-risk denominator to determine violent crime in public space hotspots on Saturday nights in Greater Manchester (UK). In doing so, the paper illuminates that as violent crime in public space rises, over the course of a Saturday evening, the exposed population-at-risk falls, implying a shifting propensity of the exposed population-at-risk to perform active roles as offenders, victims and/or guardians. The paper concludes with a discussion of the theoretical and policy relevance of these findings
    corecore