133 research outputs found

    Biophysics of the sense of smell

    Get PDF

    Radiocarbon-Dated Postglacial Delevelling in Northeast Greenland and Its Implications

    Get PDF
    Reconstructs the postglacial emergence from radiocarbon dating, at the Yale Geochronometric Laboratory, of shells and driftwood collected in the Mesters Vig area. Localities and altitudes at which the specimens were collected, species of the shells, and radiocarbon ages are tabulated, and the ages plotted against altitude. The evidence indicates that the area has been deglaciated since 9000-8500 B.P., and that the deglaciation is closely related in time and effect to the Hypsithermal. The emergence, primarily isostatic, decreased from an initial rate of 9 m/100 yrs to approx. 0.6 m/100 yrs in 6000 BP and, possibly, as little as 7 cm/100 yrs since then. A local till-like material was determined, from the shells, to be an emerged fiord-bottom rather than glacial deposit

    A more precise chronology of earthquakes produced by the San Andreas Fault in southern California

    Get PDF
    Improved methods of radiocarbon analysis have enabled us to date more precisely the earthquake ruptures of the San Andreas fault that are recorded in the sediments at Pallett Creek. Previous dates of these events had 95% confidence errors of 50–100 calendar years. New error limits are less than 23 calendar years for all but two of the dated events. This greater precision is due to larger sample size, longer counting time, lower background noise levels, more precise conversion of radiocarbon ages to calendric dates, and better stratigraphic constraints and statistical techniques. The new date ranges, with one exception, fall within the broader ranges estimated previously, but our estimate of the average interval between the latest 10 episodes of faulting is now about 132 years. Variability about the mean interval is much greater than was suspected previously. Five of the nine intervals are shorter than a century; three of the remaining four intervals are about two to three centuries long. Despite the wide range of these intervals, a pattern in the occurrence of large earthquakes at Pallett Creek is apparent in the new data. The past 10 earthquakes occur in four clusters, each of which consists of two or three events. Earthquakes within the clusters are separated by periods of several decades, but the clusters are separated by dormant periods of two to three centuries. This pattern may reflect important mechanical aspects of the fault's behavior. If this pattern continues into the future, the current period of dormancy will probably be greater than two centuries. This would mean that the section of the fault represented by the Pallett Creek site is currently in the middle of one of its longer periods of repose between clusters, and sections of the fault farther to the southeast are much more likely to produce the next great earthquake in California. The greater precision of dates now available for large earthquakes recorded at the Pallett Creek site enables speculative correlation of events between paleoseismic sites along the southern half of the San Andreas fault. A history of great earthquakes with overlapping rupture zones along the Mojave section of the fault remains one of the more attractive possibilities

    Preface

    Get PDF
    This special issue of the Journal of Geophysical Research presents 47 papers developed from research on the two deep ice cores drilled in central Greenland during the years 1989-1993 by the U.S. Greenland Ice Sheet Project 2 (GISP2) and the European Greenland Ice Core Program (GRIP). In this grand experiment, two large ice-core-drilling programs were combined. A major reason was to validate the presence of fast climate oscillations that could not be verified by a single deep ice core

    NotCal04; comparison/ calibration 14C records 26-50 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1225-1238.The radiocarbon calibration curve IntCal04 extends back to 26 cal kyr BP. While several high-resolution records exist beyond this limit, these data sets exhibit discrepancies of up to several millennia. As a result, no calibration curve for the time range 26–50 cal kyr BP can be recommended as yet, but in this paper the IntCal04 working group compares the available data sets and offers a discussion of the information that they hold

    IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1029-1058.A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0–26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0–12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4–26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue)
    corecore