9 research outputs found

    Microstructural Changes Influencing the Magnetoresistive Behavior of Bulk Nanocrystalline Materials

    Full text link
    Bulk nanocrystalline materials of small and medium ferromagnetic content were produced using severe plastic deformation by high-pressure torsion at roomtemperature. Giant magnetoresistive behavior was found for as deformed materials, which was further improved by adjusting the microstructure with thermal treatments. The adequate range of annealing temperatures was assessed with in-situ synchrotron diffraction measurements. Thermally treated CuCo materials show larger giant magnetoresistance after annealing for 1 h at 300C, while for CuFe this annealing temperature is too high and decreases the magnetoresistive properties. The improvement of magnetoresistivity by thermal treatments is discussed with respect to the microstructural evolution as observed by electron microscopy and ex situ synchrotron diffraction measurements

    Tuneable Magneto-Resistance by Severe Plastic Deformation

    Full text link
    Bulk metallic samples were synthesized from different binary powder mixtures consisting of elemental Cu, Co, and Fe using severe plastic deformation. Small particles of the ferromagnetic phase originate in the conductive Cu phase, either by incomplete dissolution or by segregation phenomena during the deformation process. These small particles are known to give rise to granular giant magnetoresistance. Taking advantage of the simple production process, it is possible to perform a systematic study on the influence of processing parameters and material compositions on the magneto-resistance. Furthermore, it is feasible to tune the magnetoresistive behavior as a function of the specimens chemical composition. It was found that specimens of low ferromagnetic content show an almost isotropic drop in resistance in a magnetic field. With increasing ferromagnetic content, percolating ferromagnetic phases cause an anisotropy of the magnetoresistance. By changing the parameters of the high pressure torsion process, i.e., sample size, deformation temperature, and strain rate, it is possible to tailor the magnitude of giant magneto-resistance. A decrease in room temperature resistivity of approx. 3.5% was found for a bulk specimen containing an approximately equiatomic fraction of Co and Cu

    Weakly Supervised Learning of Multi-Object 3D Scene Decompositions Using Deep Shape Priors

    Get PDF
    Representing scenes at the granularity of objects is a prerequisite for scene understanding and decision making. We propose PriSMONet, a novel approach based on Prior Shape knowledge for learning Multi-Object 3D scene decomposition and representations from single images. Our approach learns to decompose images of synthetic scenes with multiple objects on a planar surface into its constituent scene objects and to infer their 3D properties from a single view. A recurrent encoder regresses a latent representation of 3D shape, pose and texture of each object from an input RGB image. By differentiable rendering, we train our model to decompose scenes from RGB-D images in a self-supervised way. The 3D shapes are represented continuously in function-space as signed distance functions which we pre-train from example shapes in a supervised way. These shape priors provide weak supervision signals to better condition the challenging overall learning task. We evaluate the accuracy of our model in inferring 3D scene layout, demonstrate its generative capabilities, assess its generalization to real images, and point out benefits of the learned representation

    Strain Induced Anisotropic Magnetic Behaviour and Exchange Coupling Effect in Fe-SmCo5 Permanent Magnets Generated by High Pressure Torsion

    No full text
    High-pressure torsion (HPT), a technique of severe plastic deformation (SPD), is shown as a promising processing method for exchange-spring magnetic materials in bulk form. Powder mixtures of Fe and SmCo5_5 are consolidated and deformed by HPT exhibiting sample dimensions of several millimetres, being essential for bulky magnetic applications. The structural evolution during HPT deformation of Fe-SmCo5_5 compounds at room- and elevated- temperatures of chemical compositions consisting of 87, 47, 24 and 10 wt.% Fe is studied and microstructurally analysed. Electron microscopy and synchrotron X-ray diffraction reveal a dual-phase nanostructured composite for the as-deformed samples with grain refinement after HPT deformation. SQUID magnetometry measurements show hysteresis curves of an exchange coupled nanocomposite at room temperature, while for low temperatures a decoupling of Fe and SmCo5 is observed. Furthermore, exchange interactions between the hard- and soft-magnetic phase can explain a shift of the hysteresis curve. Strong emphasis is devoted to the correlation between the magnetic properties and the evolving nano-structure during HPT deformation, which is conducted for a 1:1 composition ratio of Fe to SmCo5_5. SQUID magnetometry measurements show an increasing saturation magnetisation for increasing strain γ and a maximum of the coercive field strength at a shear strain of γ = 75
    corecore