17 research outputs found

    B-Methylated Amine-Boranes:Substituent Redistribution, Catalytic Dehydrogenation, and Facile Metal-Free Hydrogen Transfer Reactions

    Get PDF
    Although the dehydrogenation chemistry of amine-boranes substituted at nitrogen has attracted considerable attention, much less is known about the reactivity of their B-substituted analogues. When the B-methylated amine-borane adducts, RR′NH·BH<sub>2</sub>Me (<b>1a</b>: R = R′ = H; <b>1b</b>: R = Me, R′ = H; <b>1c</b>: R = R′ = Me; <b>1d</b>: R = R′ = <i>i</i>Pr), were heated to 70 °C in solution (THF or toluene), redistribution reactions were observed involving the apparent scrambling of the methyl and hydrogen substituents on boron to afford a mixture of the species RR′NH·BH<sub>3–<i>x</i></sub>Me<sub><i>x</i></sub> (<i>x</i> = 0–3). These reactions were postulated to arise via amine-borane dissociation followed by the reversible formation of diborane intermediates and adduct reformation. Dehydrocoupling of <b>1a</b>–<b>1d</b> with Rh­(I), Ir­(III), and Ni(0) precatalysts in THF at 20 °C resulted in an array of products, including aminoborane RR′NBHMe, cyclic diborazane [RR′N–BHMe]<sub>2</sub>, and borazine [RN–BMe]<sub>3</sub> based on analysis by in situ <sup>11</sup>B NMR spectroscopy, with peak assignments further supported by density functional theory (DFT) calculations. Significantly, very rapid, metal-free hydrogen transfer between <b>1a</b> and the monomeric aminoborane, <i>i</i>Pr<sub>2</sub>NBH<sub>2</sub>, to yield <i>i</i>Pr<sub>2</sub>NH·BH<sub>3</sub> (together with dehydrogenation products derived from <b>1a</b>) was complete within only 10 min at 20 °C in THF, substantially faster than for the N-substituted analogue MeNH<sub>2</sub>·BH<sub>3</sub>. DFT calculations revealed that the hydrogen transfer proceeded via a concerted mechanism through a cyclic six-membered transition state analogous to that previously reported for the reaction of the <i>N</i>-dimethyl species Me<sub>2</sub>NH·BH<sub>3</sub> and <i>i</i>Pr<sub>2</sub>NBH<sub>2</sub>. However, as a result of the presence of an electron donating methyl substituent on boron rather than on nitrogen, the process was more thermodynamically favorable and the activation energy barrier was reduced

    Compositional control of pore geometry in multivariate metal-organic frameworks: an experimental and computational study

    Get PDF
    A new approach is reported for tailoring the pore geometry in five series of multivariate metal-organic frameworks (MOFs) based on the structure [Zn-2(bdc)(2)(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn-2(bdc)(2-x)(bdc-Br)(x)(dabco)]center dot nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn-2(bdc)(2-x)(bdc-I)(x)(dabco)]center dot nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn-2(bdc)(2-x)(bdc-NO2)(x)(dabco)]center dot nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn-2(bdc)(2-x)(bdc-NH2)(x)(dabco)]center dot nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn-2(bdc-Br)(2-x)(bdc-I)(x)(dabco)] nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission

    Get PDF
    NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense

    Compositional control of pore geometry in multivariate metal-organic frameworks: an experimental and computational study

    No full text
    A new approach is reported for tailoring the pore geometry in five series of multivariate metal-organic frameworks (MOFs) based on the structure [Zn-2(bdc)(2)(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn-2(bdc)(2-x)(bdc-Br)(x)(dabco)]center dot nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn-2(bdc)(2-x)(bdc-I)(x)(dabco)]center dot nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn-2(bdc)(2-x)(bdc-NO2)(x)(dabco)]center dot nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn-2(bdc)(2-x)(bdc-NH2)(x)(dabco)]center dot nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn-2(bdc-Br)(2-x)(bdc-I)(x)(dabco)] nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios
    corecore