393 research outputs found

    Improved Healing of Pressure Ulcers Using Dermapulse, A New Electrical Stimulation Device

    Get PDF
    A double-blind, clinical study of pulsed electrical stimulation using the DermapulseĀ® device was carried out on 40 pressure ulcers, randomized to receive either active (stim) or sham treatment. Electrodes were placed over saline-moistened gauze on the ulcers. An electrical current of 35mA was delivered to the wound tissues at a frequency of 128 pulses per second. Polarity was negative until the wound debrided, then alternated from .positive to negative every three days. Ulcers were treated for 30 minutes twice daily for four weeks, after which sham patients could cross over to active treatment, and stim patients could continue active treatment. Ulcer healing was determined by measuring the length and width of the ulcer and calculating the L x W product. The same clinicians measured the ulcers each week, were kept blinded to treatment group, and were not the same persons who applied the treatment. Nine centers treated 40 ulcers (19 sham and 21 stim). Analysis of the characteristics of the patients, the ulcers, and concomitant wound care by both univariate and multivariate analyses showed comparability of the groups. After four weeks, the stim ulcers healed more than twice as much as the sham ulcers (49.8% vs. 23.4%; (p = 0.042). The stim ulcers healed 12.5% per week compared to 5.8% for the sham group. In the 15 crossover patients, four weeks of active stimulation caused nearly four times as much healing as their four weeks of sham treatment (47.9% vs. 13.4%; p = 0.012). By the last week of-active stimulation they had healed an average of 64%, and complete healing occurred in 40% of these ulcers after an average of nine weeks. Seventeen of the active treatment ulcers had extended therapy, and by their last week of treatment had healed an average of 75%. Forty-one percent of these ulcers healed completely after an average of 11.8 weeks. There were no significant safety problems identified

    Using healthcare systems data for outcomes in clinical trials: issues to consider at the design stage.

    Get PDF
    BACKGROUND: Healthcare system data (HSD) are increasingly used in clinical trials, augmenting or replacing traditional methods of collecting outcome data. This study, PRIMORANT, set out to identify, in the UK context, issues to be considered before the decision to use HSD for outcome data in a clinical trial is finalised, a methodological question prioritised by the clinical trials community. METHODS: The PRIMORANT study had three phases. First, an initial workshop was held to scope the issues faced by trialists when considering whether to use HSDs for trial outcomes. Second, a consultation exercise was undertaken with clinical trials unit (CTU) staff, trialists, methodologists, clinicians, funding panels and data providers. Third, a final discussion workshop was held, at which the results of the consultation were fed back, case studies presented, and issues considered in small breakout groups. RESULTS: Key topics included in the consultation process were the validity of outcome data, timeliness of data capture, internal pilots, data-sharing, practical issues, and decision-making. A majority of consultation respondents (nā€‰=ā€‰78, 95%) considered the development of guidance for trialists to be feasible. Guidance was developed following the discussion workshop, for the five broad areas of terminology, feasibility, internal pilots, onward data sharing, and data archiving. CONCLUSIONS: We provide guidance to inform decisions about whether or not to use HSDs for outcomes, and if so, to assist trialists in working with registries and other HSD providers to improve the design and delivery of trials

    Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications

    Get PDF
    We have designed a novel non-antibody scaffold protein, termed Adhiron, based on a phytocystatin consensus sequence. The Adhiron scaffold shows high thermal stability (Tm ca. 101Ā°C), and is expressed well in Escherichia coli. We have determined the X-ray crystal structure of the Adhiron scaffold to 1.75 ƅ resolution revealing a compact cystatin-like fold. We have constructed a phage-display library in this scaffold by insertion of two variable peptide regions. The library is of high quality and complexity comprising 1.3 Ɨ 10(10) clones. To demonstrate library efficacy, we screened against the yeast Small Ubiquitin-like Modifier (SUMO). In selected clones, variable region 1 often contained sequences homologous to the known SUMO interactive motif (V/I-X-V/I-V/I). Four Adhirons were further characterised and displayed low nanomolar affinities and high specificity for yeast SUMO with essentially no cross-reactivity to human SUMO protein isoforms. We have identified binders against >100 target molecules to date including as examples, a fibroblast growth factor (FGF1), platelet endothelial cell adhesion molecule (PECAM-1; CD31), the SH2 domain Grb2 and a 12-aa peptide. Adhirons are highly stable and well expressed allowing highly specific binding reagents to be selected for use in molecular recognition applications

    Prenatal and Perinatal Risk Factors for Autism in China

    Get PDF
    We conducted a caseā€“control study using 190 Han children with and without autism to investigate prenatal and perinatal risk factors for autism in China. Cases were recruited through public special education schools and controls from regular public schools in the same region (Tianjin), with frequency matching on sex and birth year. Unadjusted analyses identified seven prenatal and seven perinatal risk factors significantly associated with autism. In the adjusted analysis, nine risk factors showed significant association with autism: maternal second-hand smoke exposure, maternal chronic or acute medical conditions unrelated to pregnancy, maternal unhappy emotional state, gestational complications, edema, abnormal gestational age (<35 orĀ >42Ā weeks), nuchal cord, gravidityĀ >1, and advanced paternal age at delivery (>30Ā year-old)

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    An assessment of nitrogen concentrations from spectroscopic measurements in the JET and ASDEX upgrade divertor

    Get PDF
    The impurity concentration in the tokamak divertor plasma is a necessary input for predictive scaling of divertor detachment, however direct measurements from existing tokamaks in different divertor plasma conditions are limited. To address this, we have applied a recently developed spectroscopic N II line ratio technique for measuring the N concentration in the divertor to a range of H-mode and L-mode plasma from the ASDEX Upgrade and JET tokamaks, respectively. The results from both devices show that as the power crossing the separatrix, Psep_{sep}, is increased under otherwise similar core conditions (e.g. density), a higher N concentration is required to achieve the same detachment state. For example, the N concentrations at the start of detachment increase from ā‰ˆ2% to ā‰ˆ9% as Psep is increased from ā‰ˆ2.5 MW to ā‰ˆ7 MW. These results tentatively agree with scaling law predictions (e.g. Goldston et al.) motivating a further study examining the parameters which affect the N concentration required to reach detachment. Finally, the N concentrations from spectroscopy and the ratio of D and N gas valve fluxes agree within experimental uncertainty only when the vessel surfaces are fully-loaded with N

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an HMode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cmāˆ’3^{-3} at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the EƗB drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten

    Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling

    Get PDF
    The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/ trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position Ļt_{t}=0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile

    The effect of beryllium oxide on retention in JET ITER-like wall tiles

    Get PDF
    Preliminary results investigating the microstructure, bonding and effect of beryllium oxide formation on retention in the JET ITER-like wall beryllium tiles, are presented. The tiles have been investigated by several techniques: Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX), Transmission Electron microscopy (TEM) equipped with EDX and Electron Energy Loss Spectroscopy (EELS), Raman Spectroscopy and Thermal Desorption Spectroscopy (TDS). This paper focuses on results from melted materials of the dump plate tiles in JET. From our results and the literature, it is concluded, beryllium can form micron deep oxide islands contrary to the nanometric oxides predicted under vacuum conditions. The deepest oxides analyzed were up to 2-micron thicknesses. The beryllium Deuteroxide (BeOxDy) bond was found with Raman Spectroscopy. Application of EELS confirmed the oxide presence and stoichiometry. Literature suggests these oxides form at temperatures greater than 700 Ā°C where self-diffusion of beryllium ions through the surface oxide layer can occur. Further oxidation is made possible between oxygen plasma impurities and the beryllium ions now present at the wall surface. Under Ultra High Vacuum (UHV) nanometric Beryllium oxide layers are formed and passivate at room temperature. After continual cyclic heating (to the point of melt formation) in the presence of oxygen impurities from the plasma, oxide growth to the levels seen experimentally (approximately two microns) is proposed. This retention mechanism is not considered to contribute dramatically to overall retention in JET, due to low levels of melt formation. However, this mechanism, thought the result of operation environment and melt formation, could be of wider concern to ITER, dependent on wall temperatures
    • ā€¦
    corecore