699 research outputs found

    Periodic Homogenization for Inertial Particles

    Get PDF
    We study the problem of homogenization for inertial particles moving in a periodic velocity field, and subject to molecular diffusion. We show that, under appropriate assumptions on the velocity field, the large scale, long time behavior of the inertial particles is governed by an effective diffusion equation for the position variable alone. To achieve this we use a formal multiple scale expansion in the scale parameter. This expansion relies on the hypo-ellipticity of the underlying diffusion. An expression for the diffusivity tensor is found and various of its properties studied. In particular, an expansion in terms of the non-dimensional particle relaxation time τ\tau (the Stokes number) is shown to co-incide with the known result for passive (non-inertial) tracers in the singular limit τ→0\tau \to 0. This requires the solution of a singular perturbation problem, achieved by means of a formal multiple scales expansion in τ.\tau. Incompressible and potential fields are studied, as well as fields which are neither, and theoretical findings are supported by numerical simulations.Comment: 31 pages, 7 figures, accepted for publication in Physica D. Typos corrected. One reference adde

    Investigation of Factors Determining the Enhanced Permeability and Retention Effect in Subcutaneous Xenografts

    Get PDF
    Liposomal chemotherapy offers several advantages over conventional therapies, including high intratumoral drug delivery, reduced side effects, prolonged circulation time and the possibility to dose higher. The efficient delivery of liposomal chemotherapeutics relies however on the enhanced permeability and retention (EPR) effect, which refers to the ability of macromolecules to extravasate leaky tumor vessels and accumulate in the tumor tissue. Using a panel of human xenograft tumors, we evaluated the influence of the EPR effect on liposomal distribution in vivo by injection of pegylated liposomes radiolabeled with 111In. Liposomal accumulation in tumors and organs was followed over time by SPECT/CT imaging. We observed that fast growing xenografts, which may be less representative of tumor development in patients, showed higher liposomal accumulation as compared to slow growing xenografts. Additionally, several other parameters determining the EPR effect were evaluated, such as blood and lymphatic vessel density, intratumoral hypoxia, and the presence of macrophages. The investigation of various parameters showed a few correlations. Although hypoxia, proliferation and macrophage presence were associated with tumor growth, no hard conclusions or predictions could be made regarding the EPR effect or liposomal uptake. However liposomal uptake was

    Extracting Br(omega->pi^+ pi^-) from the Time-like Pion Form-factor

    Full text link
    We extract the G-parity-violating branching ratio Br(omega->pi^+ pi^-) from the effective rho-omega mixing matrix element Pi_{rho omega}(s), determined from e^+e^- -> pi^+ pi^- data. The omega->pi^+ pi^- partial width can be determined either from the time-like pion form factor or through the constraint that the mixed physical propagator D_{rho omega}^{mu nu}(s) possesses no poles. The two procedures are inequivalent in practice, and we show why the first is preferred, to find finally Br(omega->pi^+ pi^-) = 1.9 +/- 0.3%.Comment: 12 pages (published version

    Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise

    Get PDF
    Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to ~30‐32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust

    Independent and complementary bio-functional effects of CuO and Ga2O3 incorporated as therapeutic agents in silica- and phosphate-based bioactive glasses

    Get PDF
    The incorporation of therapeutic-capable ions into bioactive glasses (BGs), either based on silica (SBGs) or phosphate (PBGs), is currently envisaged as a proficient path for facilitating bone regeneration. In conjunction with this view, the single and complementary structural and bio-functional roles of CuO and Ga2O3 (in the 2–5 mol% range) were assessed, by deriving a series of SBG and PBG formulations starting from the parent glass systems, FastOs¼BG – 38.5SiO2—36.1CaO—5.6P2O5—19.2MgO—0.6CaF2, and 50.0P2O5—35.0CaO—10.0Na2O—5.0 Fe2O3 (mol%), respectively, using the process of melt-quenching. The inter-linked physico-chemistry – biological response of BGs was assessed in search of bio-functional triggers. Further light was shed on the structural role – as network former or modifier – of Cu and Ga, immersed in SBG and PBG matrices. The preliminary biological performance was surveyed in vitro by quantification of Cu and Ga ion release under homeostatic conditions, cytocompatibility assays (in fibroblast cell cultures) and antibacterial tests (against Staphylococcus aureus). The similar (Cu) and dissimilar (Ga) structural roles in the SBG and PBG vitreous networks governed their release. Namely, Cu ions were leached in similar concentrations (ranging from 10–35 ppm and 50–110 ppm at BG doses of 5 and 50 mg/mL, respectively) for both type of BGs, while the release of Ga ions was 1–2 orders of magnitude lower in the case of SBGs (i.e., 0.2–6 ppm) compared to PBGs (i.e., 9–135 ppm). This was attributed to the network modifier role of Cu in both types of BGs, and conversely, to the network former (SBGs) and network modifier (PBGs) roles of Ga. All glasses were cytocompatible at a dose of 5 mg/mL, while at the same concentration the antimicrobial efficiency was found to be accentuated by the coupled release of Cu and Ga ions from SBG. By collective assessment, the most prominent candidate material for the further development of implant coatings and bone graft substitutes was delineated as the 38.5SiO2—34.1CaO—5.6P2O5—16.2MgO—0.6CaF2—2.0CuO—3.0Ga2O3 (mol%) SBG system, which yielded moderate Cu and Ga ion release, excellent cytocompatibility and marked antibacterial efficacy.publishe

    Exawatt-Zettawatt Pulse Generation and Applications

    Full text link
    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.Comment: 13 pages, 4 figure

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1p−Γ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page
    • 

    corecore