21 research outputs found
Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst
Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawaterbased MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocathodes, cyclic voltammetry reveals a catalytic-current–potential dependency consistent with heterogeneous electron transfer mediated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a multimicrobe-thick biofilm (up to 8.2 μm), and does not lose catalytic activity after exchanges of the reactor medium. Moreover, the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two communities must be further explored to fully realize the potential for MSC applications
Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome
Microorganisms that respire electrodes may be exploited for biotechnology applications if key pathways for extracellular electron transfer (EET) can be identified and manipulated through bioengineering. To determine whether expression of proposed Biocathode-MCL EET proteins are changed by modulating electrode potential without disrupting the relative distribution of microbial constituents, metaproteomic and 16S rRNA gene expression analyses were performed after switching from an optimal to suboptimal potential based on an expected decrease in electrode respiration. Five hundred and seventy-nine unique proteins were identified across both potentials, the majority of which were assigned to three previously defined Biocathode-MCL metagenomic clusters: a Marinobacter sp., a member of the family Chromatiaceae, and a Labrenzia sp. Statistical analysis of spectral counts using the Fisher's exact test identified 16 proteins associated with the optimal potential, five of which are predicted electron transfer proteins. The majority of proteins associated with the suboptimal potential were involved in protein turnover/turnover, motility, and membrane transport. Unipept and 16S rRNA gene expression analyses indicated that the taxonomic profile of the microbiome did not change after 52 hours at the suboptimal potential. These findings show that protein expression is sensitive to the electrode potential without inducing shifts in community composition, a feature that may be exploited for engineering Biocathode-MCL
A Previously Uncharacterized, Nonphotosynthetic Member of the Chromatiaceae Is the Primary CO_2-Fixing Constituent in a Self-Regenerating Biocathode
Biocathode extracellular electron transfer (EET) may be exploited for biotechnology applications, including microbially mediated O_2 reduction in microbial fuel cells and microbial electrosynthesis. However, biocathode mechanistic studies needed to improve or engineer functionality have been limited to a few select species that form sparse, homogeneous biofilms characterized by little or no growth. Attempts to cultivate isolates from biocathode environmental enrichments often fail due to a lack of some advantage provided by life in a consortium, highlighting the need to study and understand biocathode consortia in situ. Here, we present metagenomic and metaproteomic characterization of a previously described biocathode biofilm (+310 mV versus a standard hydrogen electrode [SHE]) enriched from seawater, reducing O_2, and presumably fixing CO_2 for biomass generation. Metagenomics identified 16 distinct cluster genomes, 15 of which could be assigned at the family or genus level and whose abundance was roughly divided between Alpha- and Gammaproteobacteria. A total of 644 proteins were identified from shotgun metaproteomics and have been deposited in the the ProteomeXchange with identifier PXD001045. Cluster genomes were used to assign the taxonomic identities of 599 proteins, with Marinobacter, Chromatiaceae, and Labrenzia the most represented. RubisCO and phosphoribulokinase, along with 9 other Calvin-Benson-Bassham cycle proteins, were identified from Chromatiaceae. In addition, proteins similar to those predicted for iron oxidation pathways of known iron-oxidizing bacteria were observed for Chromatiaceae. These findings represent the first description of putative EET and CO_2 fixation mechanisms for a self-regenerating, self-sustaining multispecies biocathode, providing potential targets for functional engineering, as well as new insights into biocathode EET pathways using proteomics
Microbial Electrochemical Energy Storage and Recovery in a Combined Electrotrophic and Electrogenic Biofilm
Here we report enrichment from a marine-derived inoculum of a nonphotosynthetic electroactive biofilm that is capable of both consuming electricity (electrotrophy) and producing electricity (electrogenesis) from a single electrode. With the alternation of the electrode potential between −0.4 and 0.0 VSHE every 10 min, alternating anodic and cathodic currents increased in lock step (maximum current density of ±1.4 ± 0.4 A/m2 in both modes, Coulombic efficiency of ∼98% per charge−discharge cycle), which is consistent with alternating between generation and consumption of energy storage compounds by the biofilm. Cyclic voltammetry exhibited a single sigmoid-shaped feature spanning anodic and cathodic limiting currents centered at −0.15 VSHE, a phenomenon not observed to date for an electroactive biofilm, and square wave voltammetry exhibited reversible peaks at −0.15 and −0.05 VSHE, suggesting the same redox cofactor(s) facilitates electron transport at the biofilm−electrode interface in both modes. Hydrogen and carbon monoxide, known energy and/or carbon sources for cellular metabolism, but no volatile fatty acids, were detected in reactors. Cells and cell clusters were spread across the electrode surface, as seen by confocal microscopy. These results suggest that a single microbial electrochemical biofilm can alternate between storing energy and generating power, furthering the potential applicability of bioelectrochemical systems
Recommended from our members
Reductive Dechlorination of 2-Chlorophenol by Anaeromyxobacter Dehalogenans with Electrode Serving as the Electron Donor
Electrodes poised at potentials low enough to serve as an electron donor for microbial respiration, but high enough to avoid the production of hydrogen, have been proposed as an alternative to the use of soluble electron donors for stimulating the bioremediation of chlorinated contaminants and/or metals. However, this form of respiration using pure cultures of microorganisms has only been reported in Geobacter species. To further evaluate this bioremediation strategy studies were conducted with Anaeromyxobacter dehalogenans, which has previously been reported to reductively dechlorinate 2-chlorophenol to phenol with acetate as the electron donor. Anaeromyxobacter dehalogenans could oxidize acetate with electron transfer to a graphite electrode poised at a positive potential, demonstrating its ability to directly exchange electrons with electrodes. Anaeromyxobacter dehalogenans attached to electrodes poised at −300 mV versus standard hydrogen electrode reductively dechlorinated 2-chlorophenol to phenol. There was no dechlorination in the absence of A. dehalogenans and electrode-driven dechlorination stopped when the supply of electrons to the electrode was disrupted. The findings that microorganisms other than Geobacter species can accept electrons from electrodes for anaerobic respiration and that chlorinated aromatic compounds can be dechlorinated in this manner suggest that there may be substantial potential for treating a diversity of contaminants with microbe–electrode interactions
Recommended from our members
Application of Cyclic Voltammetry to Investigate Enhanced Catalytic Current Generation by Biofilm-Modified Anodes of Geobacter Sulfurreducens Strain DL1 vs. Variant Strain Kn400
A biofilm of Geobacter sulfurreducens will grow on an anode surface and catalyze the generation of an electrical current by oxidizing acetate and utilizing the anode as its metabolic terminal electron acceptor. Here we report qualitative analysis of cyclic voltammetry of anodes modified with biofilms of G. sulfurreducens strains DL1 and KN400 to predict possible rate-limiting steps in current generation. Strain KN400 generates approximately 2 to 8-fold greater current than strain DL1 depending upon the electrode material, enabling comparative electrochemical analysis to study the mechanism of current generation. This analysis is based on our recently reported electrochemical model for biofilm-catalyzed current generation expanded here to a five step model; Step 1 is mass transport of acetate, carbon dioxide and protons into and out of the biofilm, Step 2 is microbial turnover of acetate to carbon dioxide and protons, Step 3 is the non-concerted, 1-electron reduction of 8 equivalents of electron transfer (ET) mediator, Step 4 is extracellular electron transfer (EET) through the biofilm to the electrode surface, and Step 5 is the reversible oxidation of reduced mediator by the electrode. Five idealized voltammetric current vs. potential dependencies (voltammograms) are derived, one for when each step in the model is assumed to limit catalytic current. Comparison to experimental voltammetry of DL1 and KN400 biofilm-modified anodes suggests that for both strains, the microbial oxidation of acetate (Step 2) is fast compared to microbial reduction of ET mediator (Step 3), and either Step 3 or EET through the biofilm (Step 4) limits catalytic current generation. The possible limitation of catalytic current by Step 4 is consistent with proton concentration gradients observed within these biofilms and finite thicknesses achieved by these biofilms. The model presented here has been universally designed for application to biofilms other than G. sulfurreducens and could serve as a platform for future quantitative voltammetric analysis of non-corrosive anode and cathode reactions catalyzed by microorganisms
Recommended from our members
Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter Lovleyi
The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole electron acceptor. Current was produced at levels that were ca. 10-fold lower than those previously reported for Geobacter sulfurreducens under similar conditions, and G. lovleyi anode biofilms were correspondingly thinner. When an electrode poised at −300 mV (versus a standard hydrogen electrode) was provided as the electron donor, G. lovleyi effectively reduced fumarate to succinate. The stoichiometry of electrons consumed to succinate produced was 2:1, the ratio expected if the electrode served as the sole electron donor for fumarate reduction. G. lovleyi effectively reduced tetrachloroethene (PCE) to cis-dichloroethene with a poised electrode as the sole electron donor at rates comparable to those obtained when acetate serves as the electron donor. Cells were less abundant on the electrodes when the electrodes served as an electron donor than when they served as an electron acceptor. PCE was not reduced in controls without cells or when the current supply to cells was interrupted. These results demonstrate that G. lovleyi can use a poised electrode as a direct electron donor for reductive dechlorination of PCE. The ability to colocalize dechlorinating microorganisms with electrodes has several potential advantages for bioremediation of subsurface chlorinated contaminants, especially in source zones where electron donor delivery is challenging and often limits dechlorination
Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter lovleyiâ–¿
The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole electron acceptor. Current was produced at levels that were ca. 10-fold lower than those previously reported for Geobacter sulfurreducens under similar conditions, and G. lovleyi anode biofilms were correspondingly thinner. When an electrode poised at −300 mV (versus a standard hydrogen electrode) was provided as the electron donor, G. lovleyi effectively reduced fumarate to succinate. The stoichiometry of electrons consumed to succinate produced was 2:1, the ratio expected if the electrode served as the sole electron donor for fumarate reduction. G. lovleyi effectively reduced tetrachloroethene (PCE) to cis-dichloroethene with a poised electrode as the sole electron donor at rates comparable to those obtained when acetate serves as the electron donor. Cells were less abundant on the electrodes when the electrodes served as an electron donor than when they served as an electron acceptor. PCE was not reduced in controls without cells or when the current supply to cells was interrupted. These results demonstrate that G. lovleyi can use a poised electrode as a direct electron donor for reductive dechlorination of PCE. The ability to colocalize dechlorinating microorganisms with electrodes has several potential advantages for bioremediation of subsurface chlorinated contaminants, especially in source zones where electron donor delivery is challenging and often limits dechlorination