
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

U.S. Navy Research U.S. Department of Defense 

2013 

Electrochemical Investigation of a Microbial Solar Cell Reveals a Electrochemical Investigation of a Microbial Solar Cell Reveals a 

Nonphotosynthetic Biocathode Catalyst Nonphotosynthetic Biocathode Catalyst 

Sarah M. Strycharz-Glaven 
U.S. Naval Research Laboratory, sarah.glaven@nrl.navy.mil 

Richard H. Glaven 
Nova Research, Inc. 

Zheng Wang 
U.S. Naval Research Laboratory 

Jing Zhou 
Nova Research, Inc. 

Gary J. Vora 
U.S. Naval Research Laboratory 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usnavyresearch 

Strycharz-Glaven, Sarah M.; Glaven, Richard H.; Wang, Zheng; Zhou, Jing; Vora, Gary J.; and Tender, 
Leonard M., "Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic 
Biocathode Catalyst" (2013). U.S. Navy Research. 77. 
https://digitalcommons.unl.edu/usnavyresearch/77 

This Article is brought to you for free and open access by the U.S. Department of Defense at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an 
authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usnavyresearch
https://digitalcommons.unl.edu/usdeptdefense
https://digitalcommons.unl.edu/usnavyresearch?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usnavyresearch/77?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Sarah M. Strycharz-Glaven, Richard H. Glaven, Zheng Wang, Jing Zhou, Gary J. Vora, and Leonard M. 
Tender 

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/
usnavyresearch/77 

https://digitalcommons.unl.edu/usnavyresearch/77
https://digitalcommons.unl.edu/usnavyresearch/77


Electrochemical Investigation of a Microbial Solar Cell Reveals a
Nonphotosynthetic Biocathode Catalyst

Sarah M. Strycharz-Glaven,a Richard H. Glaven,b Zheng Wang,a Jing Zhou,c Gary J. Vora,a Leonard M. Tendera

Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USAa; Nova Research, Inc., Alexandria, Virginia, USAb; IBM Almaden
Research Center, San Jose, California, USAc

Microbial solar cells (MSCs) are microbial fuel cells (MFCs) that generate their own oxidant and/or fuel through photosynthetic
reactions. Here, we present electrochemical analyses and biofilm 16S rRNA gene profiling of biocathodes of sediment/seawater-
based MSCs inoculated from the biocathode of a previously described sediment/seawater-based MSC. Electrochemical analyses
indicate that for these second-generation MSC biocathodes, catalytic activity diminishes over time if illumination is provided
during growth, whereas it remains relatively stable if growth occurs in the dark. For both illuminated and dark MSC biocath-
odes, cyclic voltammetry reveals a catalytic-current–potential dependency consistent with heterogeneous electron transfer medi-
ated by an insoluble microbial redox cofactor, which was conserved following enrichment of the dark MSC biocathode using a
three-electrode configuration. 16S rRNA gene profiling showed Gammaproteobacteria, most closely related to Marinobacter
spp., predominated in the enriched biocathode. The enriched biocathode biofilm is easily cultured on graphite cathodes, forms a
multimicrobe-thick biofilm (up to 8.2 �m), and does not lose catalytic activity after exchanges of the reactor medium. Moreover,
the consortium can be grown on cathodes with only inorganic carbon provided as the carbon source, which may be exploited for
proposed bioelectrochemical systems for electrosynthesis of organic carbon from carbon dioxide. These results support a
scheme where two distinct communities of organisms develop within MSC biocathodes: one that is photosynthetically active and
one that catalyzes reduction of O2 by the cathode, where the former partially inhibits the latter. The relationship between the two
communities must be further explored to fully realize the potential for MSC applications.

It has been hypothesized that microbial solar cells (MSCs) can
continuously generate electricity from sunlight without addi-

tional oxidant or fuel, since the products of photosynthesis (e.g.,
oxygen and organic carbon) can be utilized as electrode reactants
while the electrode products (e.g., inorganic carbon and water)
can be utilized as photosynthetic reactants (1) (see Fig. S1 in the
supplemental material). MSCs have been recognized as a possible
source of renewable energy since as early as the 1960s, when pho-
tosynthetic microorganisms were used to modify electrodes for
improved current production (2). Since then, several adaptations
of MSCs have been developed and were recently reviewed (3, 4).
The majority of these adaptations utilize photosynthetic processes
only at the biofilm anode, such as photosynthetic generation of
hydrogen or photosynthetically derived electrons for electricity
generation (5–7). Few studies have focused on photosynthetic
processes at the biofilm cathode (1, 8–10). For example, He et al.
(8), reported on the self-assembly of a synergistic phototrophic-
heterotrophic cathode biofilm from a sediment microbial fuel cell
(SMFC) (a microbial fuel cell comprised of an organic-matter-
oxidizing anode embedded in anoxic marine sediment and an
oxygen-reducing cathode positioned in overlying oxic water [11,
12]). In this configuration, current became inhibited due to oxy-
gen intrusion into the sediment. Strik et al. (9) developed a revers-
ible photosynthetic bioelectrode to address the pH gradient
limitations encountered in traditional MFCs. This work demon-
strated that by first generating an oxygen-producing phototrophic
biofilm from wastewater at the cathode of an MFC, all of the
reactions could be isolated to a single chamber. This was likely due
to the presence of heterotrophic bacteria that were able to drive
electrons onto the electrode, as well as reduce O2.

Previous work by our group indicated that a benchtop sedi-
ment/seawater-based MSC configured in an airtight container to

exclude ambient oxygen was able to deliver continuous power for
�8,000 h with a positive light response without any indication of
depletion of power output (1). It was proposed that a pho-
totrophic microbial biofilm on the cathode was responsible for
both oxygen generation and the catalysis of oxygen reduction at
the cathode required to generate power. In the study reported
here, we performed subsequent biocathode enrichments with and
without illumination using the progenitor MSC as an inoculum
source and defined culturing conditions to separate light-depen-
dent and -independent catalytic components of the MSC biocath-
ode and to identify biofilm community constituents responsible
for these catalytic properties. The results indicate that a light-in-
dependent consortium of microorganisms is responsible for catal-
ysis of oxygen reduction at the cathode. This consortium appears
to carry out respiration of the cathode by coupling electron trans-
fer from the cathode via an insoluble redox cofactor (13) to dis-
solved atmospheric O2, where dissolved inorganic carbon is the
only available carbon source.

MATERIALS AND METHODS
Microbial fuel cell enrichment experiments. Two sealed sediment-based
MSCs were assembled in airtight polypropylene food storage containers
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with a circular-plate graphite cathode and anode (6.0 cm by 0.2 cm; total
geometric surface area, 0.00520 m2), similar to those previously described
(1). The graphite was pretreated with 0.5 N NaOH, 0.5 N HCl, and deion-
ized water to neutral pH. A titanium bolt used to make an electrical con-
nection to the graphite anode was inserted through a hole in the bottom of
the container and sealed with inert epoxy. A titanium wire was inserted
through a rubber stopper in the container lid and used to make an elec-
trical connection from the cathode to the graphite anode. A reference
electrode (Ag/AgCl, 3 M NaCl; BAS Inc.) was inserted through an airtight
rubber stopper in the container lid. Reference electrodes were evaluated
for drift in potential both before and after prolonged use in the reactor by
testing the open-circuit potential against a new reference electrode dedi-
cated to this purpose. Typically, reference electrodes were offset 2 to 4 mV
from the test reference. Approximately 600 ml of seawater-saturated sed-
iment collected from the boat basin of the Rutgers University Marine Field
Station near Tuckerton, NJ (1), was added to the container and allowed to
settle overnight, covering the anode at a depth of ca. 1 to 2 cm. Approxi-
mately 750 ml of sterilized seawater (autoclaved 3 times) collected from
the same site was then added to allow as little headspace as possible once
the container was sealed. The MSCs were inoculated with fragments of a
biofilm harvested from the biocathode of a previously described progen-
itor MSC (MSC 1 from a previous study) (1), sealed so that the cathode
was positioned in seawater above the sediment, and discharged across a
resistor (5 k�) following equilibration at open circuit for 3 days. The
MSCs were maintained in an illuminated incubator for 10 weeks with a
12-h on/off light cycle at 30°C and a total photosynthetic photon flux
density (PPFD) of 120 �mol s�1 m�2. One of the MSCs, referred to here
as the dark MSC, was covered with a blackout cloth to exclude light (PPFD
nondetect) in order to inhibit the growth of photosynthetic organisms.

Electrochemical analysis of MSCs. For each MSC, the potentials of
the cathode versus the reference electrode (Ag/AgCl) and the cathode
versus the anode were monitored either using a multimeter (Keithley
2100) connected to Excel spreadsheet plug-in recording software
(Keithley) or using a multichannel potentiostat (Solartron 1470E) under
software control (MultiStat; Scribner). Cell voltage was converted to cur-
rent density by Ohm’s law (V � IR, where V is voltage, I is current, and R
is resistance) and divided by the entire geometric surface area of the an-
ode. Periodically, cyclic voltammetry (CV) was recorded (0.300 V to
�0.125 V and back to 0.300 V at a scan rate of 0.0002 V/s) for the cathode,
using the anode as the counterelectrode. In this case, current density was
determined using the total geometric surface area of the cathode.

Potentiostat enrichment experiments. Scrapings of the cathode bio-
film were taken from the dark MSC after 10 weeks once a steady cell
voltage was achieved and were subsequently transferred into three poten-
tiostat-poised single-chamber electrochemical reactors, except in the case
of abiotic control reactors. Each reactor was a rimmed 100-ml glass beaker
with a silicon gasket and Teflon lid held together with stainless steel
clamps. The working electrodes were graphite rods (radius, 0.3 cm;
height, 6 cm; total geometric surface area, 0.00120 m2) or graphite flags
(1.5 by 1.5 by 0.2 cm; total geometric surface area, 0.00074 m2) with
titanium wire leads (used only for confocal laser scanning microscopy; the
current is depicted in Fig. S2 in the supplemental material) inserted into
the chamber through rubber stoppers placed in predrilled holes in the
Teflon lids. The counterelectrodes were graphite rods (radius, 0.3 cm;
height, 6 cm; total geometric surface area, 0.00120 m2). Single-chamber
electrochemical cells were partially assembled and autoclaved. The refer-
ence electrodes (Ag/AgCl, 3 M NaCl; BAS Inc.) were sterilized in 10%
bleach and added to the sterilized electrochemical reactors. The reactors
were filled, minimizing the headspace, with artificial-seawater (ASW) me-
dium for neutrophilic iron-oxidizing bacteria (14), containing 27.50 g
NaCl, 3.80 g MgCl2 · 6H2O, 6.78 g MgSO4 · H2O, 0.72 g KCl, 0.62 g
NaHCO3, 2.79 g CaCl2 · 2H2O, 1.00 g NH4Cl, 0.05 g K2HPO4, and 1 ml
Wolfe’s trace mineral solution per liter (14). The medium was brought to
a final pH of 6.1 to 6.5 with CO2. Reactors were maintained in the same
illuminated incubator described above at 30°C but were covered in black-

out cloth to exclude light (PPFD nondetect). The working electrodes of
these reactors were maintained at 0.100 V (approximately 0.310 V versus
a standard hydrogen electrode [SHE]) so as to act as cathodes using a
multichannel potentiostat (Solartron 1470E) under software control
(MultiStat; Scribner). The background current during chronoampero-
metry and the CV (0.300 V to �0.125 V and back to 0.300 V at a scan rate
of 0.0002 V/s) were recorded for each reactor before inoculation, and
subsequently, the CV of biocathodes was recorded using the same param-
eters.

Clone library generation and phylogenetic analysis. Biofilms were
sampled for metagenomic DNA isolation and analysis once a stable cell
voltage was maintained for 10 weeks (sediment/seawater-based MSCs) or
stable current (applied potential reactors) was achieved by scraping the
biofilm from the electrode with a clean, ethanol flame-sterilized razor
blade. Biofilm samples were resuspended in isotonic wash buffer, homog-
enized by brief vortexing, and pelleted at 10,000 � g for 2 min. The su-
pernatant was removed and discarded, and the pellets were stored at
�20°C. Total metagenomic DNA was extracted from the electrode scrap-
ings using a soil DNA extraction kit according to the manufacturer’s in-
structions (UltraClean soil DNA isolation kit; Mo Bio). Between 0.5 and 1
ng/�l of metagenomic DNA was used to amplify the entire 16S rRNA gene
using 16S rRNA universal primers (forward primer 49F, 5=-TNANACAT
GCAAGTCGRRCG-3=; reverse primer 1510R, 5=-RGYTACCTTGTTAC
GACTT-3= [15]) and the following thermocycling conditions: 94°C for 3
min; 34 cycles of 94°C (30 s), 50°C (30 s), and 72°C (1 min); and 72°C for
10 min. The amplification products were purified using the MinElute PCR
purification kit (Qiagen). DNA clone libraries were constructed from pu-
rified PCR fragments using a Topo TA cloning kit (Invitrogen) according
to the manufacturer’s instructions. Positive colonies were selected and
placed into a 96-well plate for PCR amplification of the cloned insert for
sequencing using M13 forward (5=-GTAAAACGACGGCCAGT-3=) and
reverse (5=-CAGGAAACAGCTATGAC-3=) primers. The amplification
products were purified using the ExoSap-It for PCR Product Clean-Up
(Affymetrix), and sequencing was performed using the M13F primer on
an ABI 3730 XL (Applied Biosystems). The resulting sequences were
searched using the National Center for Biotechnology Information data-
base (http://www.ncbi.nlm.nih.gov/BLAST/) and deposited in GenBank.
16S rRNA gene sequences were randomly selected from each sample and
used to generate phylogenetic trees based on the neighbor-joining method
(16) using the MEGA4 program (17).

Scanning electron microscopy. The bottom 1 cm of one of the work-
ing electrodes of the aforementioned three-electrode reactors was re-
moved once a stable current was achieved by first scoring the electrode
with an ethanol flame-sterilized razor blade and breaking off the scored
portion using needle nose pliers. The electrode was rinsed in sterile, fil-
tered (0.2 �m) isotonic wash buffer consisting of 4.19 g MOPS (morpho-
linepropanesulfonic acid), 0.60 g NaH2PO4 · H2O, 0.10 g KCl, 5.00 g
NaCl, and 10 ml Mg-Ca mixture (3.00 g/liter MgSO4 · 7H2O, 0.10 g/liter
CaCl2 · 2H2O) per liter. The sample was fixed for 2 h in filter-sterilized 2%
glutaraldehyde–phosphate-buffered saline (PBS) solution (pH 8.0),
rinsed with PBS, and dehydrated using a graded acetone series (35, 50, 70,
90, 100, 100, 100, 100, 100, and 100% for 10 min each), followed by 50%
hexamethyldisilazane (HMDS) in acetone for 10 min, 100% HMDS twice
for 10 min each time, and air drying. Following dehydration, the sample
was sputter coated (Cressington sputter coater 108auto) and analyzed
using a scanning electron microscope (Carl Zeiss SMT Supra 55) at 4 kV.

Confocal laser scanning microscopy. Graphite flag electrodes were
removed from the electrochemical reactors once maximum current was
achieved (see Fig. S2 in the supplemental material) and rinsed twice in 1�
PBS, pH 7.4 (Excelleron). Biofilms were stained according to the manu-
facturer’s instructions with the LIVE/DEAD BacLight Bacterial Viability
Kit (Invitrogen). Staining of all electrodes was carried out in 1� PBS, pH
7.4, for 10 min at room temperature in the dark. The electrodes were
rinsed once with 1� PBS, pH 7.4; allowed to destain in 1� PBS, pH 7.4,
for 10 min; and mounted in a single-well chambered cover glass slide

Strycharz-Glaven et al.

3934 aem.asm.org Applied and Environmental Microbiology

 

http://www.ncbi.nlm.nih.gov/BLAST/
http://aem.asm.org
http://aem.asm.org/


(Lab-Tek) with several microliters of mounting oil (Prolong Gold Anti-
fade; Invitrogen). Imaging was carried out using a Nikon TE-2000e in-
verted confocal microscope (Nikon) with a Nikon CFI Apo TIRF 100�
(numerical aperture, 1.49) oil objective. Two wavelengths, 488 nm and
514 nm, were used to excite the fluorescent stains. A minimum of 8 fields
were imaged and processed with the ImageJ software program (http:
//imagej.nih.gov/ij/). Three random image stacks were used to determine
the mean biofilm height by measuring the height at 18 random points for
each stack using ImageJ.

Nucleotide sequence accession numbers. The sequences developed
in the study were deposited in GenBank under accession numbers
KC569994 to KC570221.

RESULTS
Electrochemical characterization and microbial-community
analysis of the MSC biocathode. Previously, Malik et al. (1) re-
ported on the development of a spontaneously formed biocathode
biofilm using a sealed sediment/seawater-based MSC. In the pre-
vious study, the MSC demonstrated a positive current response
when the cathode was illuminated, and visual inspection of the
biofilm revealed a thick, greenish mat suggestive of a phototrophic
biofilm (18). A fragment of the biocathode biofilm from this pro-
genitor MSC was used as an inoculum source for the sediment/
seawater-based MSCs reported here, developed under defined
temperature and light conditions. Biocathodes were incubated
under either illuminated or dark conditions to determine if for-
mation of a catalytically active biofilm was dependent upon light.
A diurnal light-dependent current was established by the illumi-
nated MSC within 2 days following discharge across the resistor (5
k�) (see Fig. S3A in the supplemental material). This result is
consistent with that of the progenitor cell (1), indicating forma-
tion of a comparable biocathode. In contrast, it took 2 weeks for
the dark MSC to establish a stable current when initially dis-
charged (see Fig. S3B in the supplemental material). Current from
the dark MSC did not follow a diurnal pattern and was 2-fold
greater in magnitude than that from the illuminated MSC. The
higher current of the dark reactor than the illuminated reactor
indicated a potentially negative effect of prolonged illumination
despite the fact that the illuminated reactor formed an electro-
chemically active biofilm more quickly.

To further explore the electrochemical characteristics of the
illuminated and dark MSC biocathodes, cyclic voltammetry
was used to qualitatively assess their catalytic properties once a
stable current was achieved. Slow-scan CV (0.0002 V/s) of the
biocathodes from the illuminated (day 3) and dark (day 23)
MSCs displayed Nernstian (i.e., sigmoid-shaped) catalytic cur-
rent versus potential dependencies, with nearly identical mid-
point potentials (the potential at which the current is half of the
maximum catalytic current observed at more negative poten-
tials) of ca. 0.196 V � 0.010 V versus Ag/AgCl (Fig. 1). This
result suggests the illuminated and dark biocathodes utilize an
immobilized redox cofactor to mediate heterogeneous electron
transfer between the cathode and the biofilm and that the rate
of heterogeneous electron transfer is higher than those of other
biofilm electron transport processes (13). The fact that the
midpoint potential and shape of the catalytic wave were nearly
identical for both the dark and illuminated biocathodes sug-
gests that both utilize the same heterogeneous redox cofactor
or different cofactors with similar redox potentials. The bio-
cathode catalytic current was passivated in the illuminated
MSC after a period of 8 weeks (see Fig. S4A in the supplemental

material), which could account for the lower current of this
reactor than of the dark MSC. Possible explanations for bio-
cathode passivation in the illuminated reactor are toxicity to
the catalytic component of the biofilm from photosynthetic
activity, as discussed below, or limitation of diffusion of the
substrate through the biofilm following proliferation of non-
catalytic photosynthetic organisms. Catalytic current was de-
tected at the cathode of the dark MSC during the same time (see
Fig. S4B in the supplemental material).

16S rRNA gene clone libraries generated from biofilm scrap-
ings from the cathode of the dark MSC collected at the stable cell
current revealed a bacterial consortium whose predominant con-
stituents belong to Gammaproteobacteria, Alphaproteobacteria,
and Betaproteobacteria (88.2% of the clones; see Fig. S5A in the
supplemental material). The closest matches to known, identified
16S rRNA genes included a number of sulfur-oxidizing marine
bacteria and marine symbionts (�90% sequence identity), a neu-
trophilic iron-oxidizing Sideroxydans sp. (�90% sequence iden-
tity) (19), and other marine bacteria (�90% sequence identity)
(Fig. 2A). Identical analysis of biofilm scrapings from the cathode
of the illuminated MSC at stable cell current revealed a commu-
nity dominated by Cyanobacteria (69.0%), with Proteobacteria
(13.1%) representing a smaller fraction than in the dark MSC (see
Fig. S5B in the supplemental material). The closest matches to
known, identified 16S rRNA genes from the illuminated biocath-
ode biofilm included Cyanobacteria (100%), Bacteroidetes (100%
sequence identity), Acidobacteria (100% sequence identity), vari-
ous Alphaproteobacteria (95 to 100% sequence identity), and
Planctomycetes (66 to 93% sequence identity) (Fig. 2B).

Enrichment of the MSC biocathode in a three-electrode sys-
tem. Further enrichment of the dark sediment/seawater-based
MSC biocathode biofilm was carried out in order to characterize
catalytic activity independently of illumination and under more
rigorously defined culturing conditions. Scrapings from the bio-
cathode of the dark sediment/seawater-based MSC served as the
inoculum for three-electrode-configured electrochemical reac-
tors maintained in the dark and containing sterile, aerobic ASW
medium at nearly neutral pH, previously developed for iron-oxi-
dizing bacteria (14). These reactor conditions were chosen based

FIG 1 Slow-scan CV (0.0002 V/s) of the dark sediment/seawater-based MSC
at day 23 and the illuminated sediment/seawater-based MSC at day 3 following
discharge across a 5-k� resistor.
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FIG 2 16S rRNA gene clone libraries were generated from DNA extracted from the dark (A) and illuminated (B) sediment/seawater-based MSC biocathodes.
Representative sequences were selected at random and aligned, and phylogenetic trees were generated using Mega4 software. Bootstrap values are listed at each branch
point. Percentages are sequence identities to the closest matches to 16S rRNA genes of known organisms. The scale bar indicates estimated sequence divergence.
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on identification of an iron-oxidizing bacterium from 16S rRNA
gene profiling of the dark MSC biocathode and the likelihood that
iron-oxidizing bacteria would be candidates for microbial-cath-
ode catalysis. The working electrodes of these reactors were set at
0.100 V (versus Ag/AgCl) to act as cathodes based on midpoint
potentials observed for the MSC biocathodes in Fig. 1. A control
reactor was included under identical conditions but without elec-

trode scrapings. Current increased in magnitude in the inoculated
reactors, but not in the control reactor, within 48 h of inoculation
and achieved a maximum current density of between �0.035 A
m�2 and �0.045 A m�2 within 3 days (Fig. 3).

Slow-scan (0.0002 V/s) CV recorded at maximum current
resulted in a sigmoid-shaped curve with midpoint potential at
approximately 0.205 V versus Ag/AgCl, suggesting utilization
of a heterogeneous electron transfer cofactor by the biofilm of
the enriched biocathode that was the same or similar to that
observed in both the dark and illuminated sediment/seawater-
based MSCs (Fig. 4). A qualitative comparison (Fig. 4, open
circles) was made to a catalytic CV expected when heteroge-
neous electron transfer between the cathode and biofilm is me-
diated by a redox cofactor whose oxidation state is governed by
the electrode potential, in accordance with the Nernst equation
(equation 16 in the work of Strycharz-Glaven et al. [20]). This
comparison was in agreement with observations made for the
CV of the dark and illuminated MSCs, where the rate of heteroge-
neous electron transfer is higher than those of other biofilm electron
transport processes, analogous to a model proposed for Geobacter
bioanodes (13). The CV of the control reactor was featureless
(Fig. 4). When the reactor was purged with N2, the catalytic
current was no longer observed, indicating that O2 is the ter-
minal electron acceptor (21). A small set of voltammetric peaks
was observed in the CV of N2-purged reactors near the mid-
point potential of the catalytic curve, which we attribute to the
heterogeneous electron transfer cofactor (Fig. 4, inset) (13).
Replacing the medium with fresh, oxygenated artificial seawa-
ter restored the catalytic current (Fig. 4).

16S rRNA gene clone library analysis of the enriched dark bio-

FIG 3 Chronoamperometry of dark-MSC biocathode enrichment reactors.
The working electrode was set at 0.100 V versus Ag/AgCl to achieve the max-
imum current density recorded in the original illuminated and dark sediment/
seawater-based MSCs. Within 48 h after inoculation, an increase in current
(plotted here as negative current to indicate a cathode reaction) was observed
above the abiotic control.

FIG 4 Slow-scan CV (0.0002 V/s) of the enriched dark biocathode revealed catalytic features similar to those observed in the dark and illuminated sediment/
seawater-based MSCs (solid black line). Catalytic current was not observed in control reactors (solid gray line). Single-chamber reactors were purged with
nitrogen gas until catalytic current was no longer detected, and the nonturnover CV was recorded (dashed-dotted lines and inset). When the medium was
replaced with fresh artificial-seawater medium, catalytic current was restored (dashed line). Slow-scan voltammetry was fitted to a first approximation with the
Nernst equation according to equation 16 in reference 20 (open circles).
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cathode showed the majority of clones were identified as Proteo-
bacteria (Fig. 5). Over half of the sequences most closely matched
Marinobacter adhaerens (97 to 98% identity). Additional matches
within the Gammaproteobacteria included sulfur-oxidizing sym-

bionts of marine mammals (92% identity) and phototrophic pur-
ple sulfur bacteria (87% identity). Other sequences matched Alpha-
proteobacteria (92 to 99% identity), including one match to a
Nitratireductor sp. (94% identity). A number of sequences re-

FIG 5 16S rRNA gene clone libraries were generated from electrode-extracted DNA from the enriched biocathode, representative sequences were aligned, and
phylogenetic trees were generated using Mega4 software. Bootstrap values are listed at each branch point. Percentages are sequence identities to the closest
matches to 16S rRNA genes of known organisms. The scale bar indicates estimated sequence divergence.
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turned weak matches to Actinobacteria and Planctomycetes (82 to
85% identity).

Scanning electron microscopy of the biocathode biofilm dem-
onstrated at least two morphologically distinct rod-shaped cell
types among what appeared to be dehydrated extracellular matrix
material (Fig. 6A and B). Confocal laser scanning microscopy fol-
lowing a viability stain (LIVE/DEAD) revealed that the majority of
cells had intact membranes (green-stained cells). A representative
image captured by scanning through the z axis of the biofilm is
shown in Fig. 6C. Cell coverage was continuous over the majority
of the surface of the electrode, with the biofilm projecting up to 8.2
�m into the surrounding medium, indicating that the biofilm was
multiple cell layers thick.

DISCUSSION

We previously reported on the development of a sediment/seawa-
ter-based MSC hypothesized to be continuously driven by photo-
synthetic processes occurring at the biocathode (1). In the current
study, we sought to begin to understand the microbial and cata-
lytic underpinnings of such MSCs by determining the contribu-
tion of photosynthetic biocathode reactions versus nonphotosyn-
thetic biocathode reactions to current through electrochemical
characterization. In addition, we sought to identify catalytic bio-
cathode biofilm constituents following enrichment in single-
chamber electrochemical reactors operated with an applied po-
tential to maximize the biocathode current.

Perhaps the most interesting finding was that the catalytic ac-

tivity at the biocathode of the sediment/seawater-based MSC was
independent of light and that, under the conditions tested here,
illumination had an inhibitory effect on biocatalysis at the elec-
trode. Current density in both the illuminated and dark MSCs
reported here was comparable to that reported for the progenitor
cell (ca. 0.005 to 0.040 A m�2) (1). The dark MSC, however,
achieved a maximum current density that was twice that of the
illuminated MSC, which we attribute to passivation of catalytic
activity at the biocathode. Slow-scan CV of both the illuminated
and dark MSC biocathodes indicated Nernstian current-potential
dependencies with nearly identical midpoint potentials, suggest-
ing utilization of similar, if not the same, heterogeneous electron
transfer cofactors.

Passivation of the catalytic activity of the illuminated biocath-
ode occurred over time and may be correlated with the prolifera-
tion of photosynthetic microorganisms, which made up nearly
70% of all sequences retrieved from 16S rRNA gene profiling of
the illuminated biofilm. Cyanobacterial-bacterial-mat consortia
are highly stratified biofilms containing photosynthetic, hetero-
trophic, and chemoautotrophic microorganisms living in suboxic
and anoxic zones dependent upon complex chemical gradients
that naturally form within the biofilm (22, 23). If O2 consumption
occurs at a lower rate than photosynthetic O2 generation and dif-
fusion, suboxic and anoxic metabolism can be disrupted (22, 24).
Such a phenomenon may have occurred in the case of the illumi-
nated MSC if bacteria receiving electrons from the electrode prefer
suboxic conditions and O2 reduction is not sustained at a rate high

FIG 6 (A) Scanning electron microscopy was performed to visualize the surface of the enriched biocathode. The dashed line represents the area of the electrode
enlarged in panel B. (B) In areas where the biofilm appeared to coat the electrode surface, cells were associated with extracellular biofilm material. (C) Confocal
laser scanning microscopy was performed on a separate graphite flag electrode to determine the average biofilm thickness and viability. The average height at the
location represented by the image shown is 5.244 � 2.141 �m (n � 9). Biofilm thickness varied over the surface of the electrode and ranged from ca. 2.3 to 8.2
�m. Scale bars, 2 �m (A and B) and 10 �m (C).
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enough to keep O2 concentrations at a metabolically acceptable
level. This would likely be the case if the electrode catalytic mem-
ber of the consortium is a neutrophilic iron oxidizer thriving at the
oxic-anoxic interface (25–27), such as Sideroxydans sp. or Mari-
nobacter sp., both of which were detected in dark-biocathode 16S
rRNA gene profiles. Although passivation was not observed in the
progenitor cell (1), differences in light intensity (natural versus
controlled) and temperature (ambient versus controlled) may
have contributed to differences in O2 cycling. Potential toxicity
due to photosynthetically derived O2 has implications for future
designs of MSC reactors, where illumination may ultimately ne-
gate the benefits of a self-sustaining system. As such, further in-
vestigations of the MSC conditions are necessary to fully exploit
the photosynthetic reactions. The possibility that proliferation of
photosynthetic organisms prevents substrate diffusion in and out
of the catalytic portion of the biofilm, and thus limits current, also
needs to be explored.

Enrichment of the biocathode from the dark sediment/sea-
water-based MSC resulted in a robust, aerobic biofilm catalyz-
ing O2 reduction and was developed with no carbon source
other than dissolved inorganic carbon. A qualitative compari-
son of experimental slow-scan CV (0.0002 V/s) to a calculated
catalytic CV based on the Nernst equation indicated that het-
erogeneous electron transfer between the cathode and biofilm
is mediated by a redox cofactor whose oxidation state is gov-
erned by the electrode potential and is consistent with catalytic
current that is not limited by the rate of this reaction or by the
rate of cellular turnover of oxygen. Rather, electron transfer
appears to be limited by either the rate of transport of electrons
through the biofilm, delivery of electrons into cells comprising
the biofilm beyond the electrode interface (assuming electron
transfer at a distance from the electrode analogous to that of
anode biofilms of Geobacter sulfurreducens [13]), or diffusion
of the electron acceptor (O2) into the biofilm. In the last case, a
deviation from the classic Nernstian catalytic CV would be
expected to occur (13); however (see Fig. 3H and I in reference
13), it might not be detectable here. When the medium was
replaced in the batch reactor, no loss of current was observed,
also indicating that electron transfer reactions are likely medi-
ated by an insoluble redox cofactor. Although it is unclear at
this time whether cells at a distance from the electrode surface
participate in electron exchange, microscopy reveals a multi-
ple-cell-layer-thick biofilm at the biocathode. Viability stain-
ing identifies the majority of these cells as “live,” suggesting
that they may be prospering from electrode reactions.

At higher scan rates, voltammetric peaks could not be resolved
(not shown), suggesting that the rate of the heterogeneous elec-
tron transfer reaction and/or electron transport and mass trans-
port through the biofilm is relatively low compared to that ob-
served for G. sulfurreducens biofilms grown on anodes (13, 28).
The small size of peaks observed during nonturnover CV suggests
that the total abundance of the electron transfer cofactor was also
considerably smaller than that of G. sulfurreducens biofilms grown
on anodes, consistent with the lower catalytic current observed
here (13, 20, 29).

Introduction of photosynthetically derived oxygen to the cath-
ode compartments of MFCs to regenerate the oxidant has previ-
ously been proposed using algal cultures (3, 4, 30). However, to
our knowledge, only a few studies have reported on the electro-
chemical activity of a phototrophic biocathode (1, 8, 9) where

photosynthetic reactions are confined to the electrode biofilm,
and the CV was not reported in these studies. CV has been used to
analyze O2 reduction at nonphotosynthetic biocathodes enriched
from various inocula (21, 31, 32). Ter Heijne et al. (21) reported a
CV shaped similarly to that observed in this study when a waste-
water biocathode was developed at 0.150 V versus Ag/AgCl on
graphite in a flowthrough reactor with a reported maximum lim-
iting current of 295 mA m�2. In this case, the authors determined
that mass transport of O2 to the electrode surface, as well as within
the biofilm, is a limiting factor and suggested photosynthesis as a
means to deliver O2 to the biofilm. Mass transport of O2 is pre-
dicted to be one limiting factor in our current system; however, as
noted above, high concentrations of O2 within the biofilm may
also lead to passivation. The reintroduction of photosynthetic or-
ganisms to provide O2 directly at the biocathode-electrode inter-
face may improve this limitation only if optimal biofilm O2 gra-
dients can be established.

The community composition of electrocatalytic photosyn-
thetic biocathodes has not been explored in depth. In one study,
He et al. (8) found that the biocathode consortium of a photosyn-
thetic open-air MSC was comprised of Cyanobacteria and Proteo-
bacteria, among others, which is consistent with our illuminated-
MSC observations. Although no exact matches to sequences
identified from the illuminated MSC were observed in the dark
MSC, Proteobacteria were prevalent on both biocathodes. Reports
on spontaneously formed, nonphotosynthetic marine biocath-
odes (33, 34) have identified a number of potential microbial cat-
alysts as part of biofilm consortia (28, 30, 35). The major finding
from these studies appears to be that biocathode biofilms enriched
from the marine environment perform optimally as a consortium
rather than in pure culture and that Proteobacteria are typically
observed.

Phylogenetic analysis of the enriched biocathode consortium
in the three-electrode reactor indicated the predominance of
Gammaproteobacteria, specifically Marinobacter. Although Mari-
nobacter spp. were not detected in the initial 16S rRNA gene pro-
filing of the dark MSC, their abundance may have been too low
compared to other organisms in the sample. To our knowledge,
the presence of Marinobacter has been noted only once before as
part of a biocathode biofilm consortium, and when tested in pure
culture, it did not catalyze cathodic reactions (34). Marinobacter
spp. are ubiquitous, biofilm-forming marine bacteria known to
oxidize iron under aerobic, circumneutral conditions (36) and
have been found to be associated with photosynthetic marine or-
ganisms (37). The facultative mixotroph Marinobacter aquaeolei
VT8 is the best characterized of the Marinobacter spp. and has 47
genes encoding cytochrome proteins potentially participating in
iron oxidation (in comparison, Shewanella oneidensis MR-1 has
66) (36). The abundance of potential cytochrome proteins is sig-
nificant, because c-type cytochromes of G. sulfurreducens are
known to be essential for anode biofilm electron transfer (38).
Complementary metagenomic analysis of the biocathode enrich-
ment is under way to further explore the diversity and structure of
the community.

Conclusions. Optimization of the MSC has the potential to
provide continuous renewable power when the products of the
anodic reactions provide the reactants at the cathode, and vice
versa, with only sunlight required to generate power. In this study,
we have presented a further characterization of the electrochemi-
cal properties of both the photosynthetic and nonphotosynthetic
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constituents of an MSC biocathode. We have found that the same
voltammetric catalytic feature is observed at the electrode-biofilm
interface in the presence or absence of light. Prolonged illumina-
tion had a deleterious effect on biocathode catalytic activity, pos-
sibly due to toxicity of photosynthetic by-products or substrate
diffusion limitations caused by proliferation of photosynthetic or-
ganisms. Future studies will be aimed at reintroducing the photo-
synthetic component of the biocathode without passivating the
catalytic component.

Enrichment of the dark-MSC biocathode using a three-elec-
trode configuration led to development of a multispecies biofilm
at the biocathode that was dominated by Gammaproteobacteria,
specifically Marinobacter. Enriched biocathode biofilms did not
require any additional carbon source other than dissolved inor-
ganic carbon for growth and showed features during CV similar to
those of both the illuminated and dark sediment/seawater-based
MSC biocathodes. Qualitative analysis of CV from the enriched
biocathodes showed that current may be limited by electron trans-
fer between redox cofactors within the biofilm, electron transfer
into cells located beyond the electrode surface, or mass transfer of
O2 to the biocathode. The enriched biocathode biofilm discussed
here will be further developed for bioelectrochemical system ap-
plications where robust marine microbial biocatalysts that can
grow directly by incorporating inorganic carbon are desired, such
as for cathodic O2 reduction in MFCs and for microbial elec-
trosynthesis (39).
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Figure	  S1	  –	  General	  scheme	  for	  a	  sediment/seawater-‐based	  microbial	  solar	  cell	  (MSC).	  I.	  Complex	  organic	  maCer	  in	  the	  sediment	  is	  converted	  to	  more	  simple	  
compounds,	  such	  as	  acetate,	  by	  anaerobic	  sediment	  bacteria	  (ASB).	  II.	  Acetate	  is	  oxidized	  by	  anode	  respiring	  bacteria	  (ARB)	  which	  generates	  protons,	  carbon	  
dioxide,	  and	  electrons.	  III.	  Protons	  and	  carbon	  dioxide	  diffuse	  through	  the	  sediment	  into	  the	  overlying	  seawater;	  electrons	  flow	  through	  the	  electrode	  circuit	  
to	  the	  cathode.	  IV.	  PhotosynthePc	  bacteria	  (PB)	  in	  the	  cathode	  biofilm	  convert	  carbon	  dioxide	  and	  water	  to	  glucose	  and	  oxygen	  using	  sunlight;	  oxygen	  is	  
reduced	  to	  water	  by	  cathode	  respiring	  bacteria	  (CRB)	  catalyzing	  cathode	  oxidaPon.	  V.	  Oxygen	  and	  complex	  organic	  compounds	  produced	  during	  
photosynthesis	  are	  consumed	  by	  aerobic	  bacteria	  residing	  on	  the	  sediment	  surface,	  while	  some	  complex	  organic	  maCer	  is	  reintroduced	  into	  the	  sediment	  
beginning	  the	  cycle	  again.	  	  
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Figure	  S2	  –	  Chronoamperometry	  recorded	  during	  growth	  of	  dark	  MSC	  enrichments	  in	  three	  electrode	  configuraPon	  on	  graphite	  flag	  
electrodes	  for	  confocal	  laser	  scanning	  microscopy	  (CLSM).	  	  



Figure	  S3	  A	  –	  Day	  0	  represents	  Pme	  of	  discharge	  across	  a	  5	  kΩ	  
resistor.	  Prior	  to	  discharge,	  reactors	  were	  lea	  at	  open	  circuit	  for	  
three	  days	  where	  the	  illuminated	  reactor	  was	  exposed	  to	  a	  12	  
hour	  on/off	  light	  cycle	  and	  the	  dark	  reactor	  was	  maintained	  in	  
darkness.	  The	  illuminated	  reactor	  quickly	  established	  a	  current	  
associated	  with	  a	  diurnal	  light	  paCern,	  while	  only	  a	  small	  current	  
was	  observed	  in	  the	  dark	  reactor.	  	  

Figure	  S3	  B	  –	  This	  plot	  is	  a	  conPnuaPon	  of	  the	  plot	  in	  Figure	  S3	  
A.	  Current	  increased	  in	  the	  dark	  MSC	  two	  weeks	  aaer	  discharge	  
across	  a	  5	  kΩ	  resistor.	  	  	  	  



Figure	  S4A	  –	  Slow	  scan	  CV	  (0.0002	  V/sec)	  of	  the	  illuminated	  
microbial	  solar	  cell	  starPng	  at	  Day	  3	  following	  discharge	  across	  a	  5	  
kΩ	  resistor	  once	  a	  stable	  cell	  current	  was	  observed.	  

Figure	  S4B	  –	  Slow	  scan	  CV	  (0.0002	  V/sec)	  of	  the	  dark	  microbial	  solar	  
cell	  starPng	  at	  Day	  3	  following	  discharge	  across	  a	  5	  kΩ	  resistor	  once	  
a	  stable	  cell	  current	  was	  observed.	  



Figure	  S5	  A&B	  –16S	  rRNA	  gene	  clone	  library	  composiPon	  from	  biocathode	  biofilms	  of	  the	  dark	  reactor	  (A)	  and	  the	  illuminated	  reactor	  (B).	  
16S	  rRNA	  gene	  clone	  libraries	  were	  generated	  from	  biofilm	  scrapings	  aaer	  10	  weeks	  at	  the	  stable	  cell	  current	  for	  each	  reactor.	  	  

B	  A	  


	Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst
	
	Authors

	Electrochemical Investigation of a Microbial Solar Cell Reveals a Nonphotosynthetic Biocathode Catalyst
	MATERIALS AND METHODS
	Microbial fuel cell enrichment experiments.
	Electrochemical analysis of MSCs.
	Potentiostat enrichment experiments.
	Clone library generation and phylogenetic analysis.
	Scanning electron microscopy.
	Confocal laser scanning microscopy.
	Nucleotide sequence accession numbers.

	RESULTS
	Electrochemical characterization and microbial-community analysis of the MSC biocathode.
	Enrichment of the MSC biocathode in a three-electrode system.

	DISCUSSION
	Conclusions.

	ACKNOWLEDGMENTS
	REFERENCES


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


