30 research outputs found

    Ammonium Pertechnetate in Mixtures of Trifluoromethanesulfonic Acid and Trifluoromethanesulfonic Anhydride

    Get PDF
    Ammonium pertechnetate reacts in mixtures of trifluoromethanesulfonic anhydride and trifluoromethanesulfonic acid under final formation of ammonium pentakis(trifluoromethanesulfonato)oxidotechnetate(V), (NH4_{4})2_{2} [TcO(OTf) 5_{5}]. The reaction proceeds only at exact concentrations and under the exclusion of air and moisture via pertechnetyl trifluoromethanesulfonate, [TcO3_{3}(OTf)], and intermediate TcVI^{VI} species. 99^{99}Tc nuclear magnetic resonance (NMR) has been used to study the TcVII^{VII} compound and electron paramagnetic resonance (EPR), 99^{99}Tc NMR and X-ray absorption near-edge structure (XANES) experiments indicate the presence of the reduced technetium species. In moist air, (NH4_{4})2[TcO(OTf)5] slowly hydrolyses under formation of the tetrameric oxidotechnetate(V) (NH4_{4})4_{4} [{TcO(TcO4_{4})4_{4}}4_{4}] ⋅10 H2_{2}O. Single-crystal X-ray crystallography was used to determine the solid-state structures. Additionally, UV/Vis absorption and IR spectra as well as quantum chemical calculations confirm the identity of the species

    The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study.

    Get PDF
    Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH

    The Swiss Primary Hypersomnolence and Narcolepsy Cohort study (SPHYNCS): Study protocol for a prospective, multicentre cohort observational study

    Full text link
    Narcolepsy type 1 (NT1) is a disorder with well-established markers and a suspected autoimmune aetiology. Conversely, the narcoleptic borderland (NBL) disorders, including narcolepsy type 2, idiopathic hypersomnia, insufficient sleep syndrome and hypersomnia associated with a psychiatric disorder, lack well-defined markers and remain controversial in terms of aetiology, diagnosis and management. The Swiss Primary Hypersomnolence and Narcolepsy Cohort Study (SPHYNCS) is a comprehensive multicentre cohort study, which will investigate the clinical picture, pathophysiology and long-term course of NT1 and the NBL. The primary aim is to validate new and reappraise well-known markers for the characterization of the NBL, facilitating the diagnostic process. Seven Swiss sleep centres, belonging to the Swiss Narcolepsy Network (SNaNe), joined the study and will prospectively enrol over 500 patients with recent onset of excessive daytime sleepiness (EDS), hypersomnia or a suspected central disorder of hypersomnolence (CDH) during a 3-year recruitment phase. Healthy controls and patients with EDS due to severe sleep-disordered breathing, improving after therapy, will represent two control groups of over 50 patients each. Clinical and electrophysiological (polysomnography, multiple sleep latency test, maintenance of wakefulness test) information, and information on psychomotor vigilance and a sustained attention to response task, actigraphy and wearable devices (long-term monitoring), and responses to questionnaires will be collected at baseline and after 6, 12, 24 and 36 months. Potential disease markers will be searched for in blood, cerebrospinal fluid and stool. Analyses will include quantitative hypocretin measurements, proteomics/peptidomics, and immunological, genetic and microbiota studies. SPHYNCS will increase our understanding of CDH and the relationship between NT1 and the NBL. The identification of new disease markers is expected to lead to better and earlier diagnosis, better prognosis and personalized management of CDH

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm(-2)) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.An international team of researchers finds high potential for improving climate projections by a more comprehensive treatment of largely ignored Arctic vegetation types, underscoring the importance of Arctic energy exchange measuring stations.Peer reviewe

    Vegetation type is an important predictor of the arctic summer land surface energy budget

    Get PDF
    Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm−2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types

    Scaling spectroscopic approaches - from leaf albedo to ecosystems mapping

    Get PDF
    Field based spectroscopy for ecological and environmental monitoring has become an indispensable part of complete observational systems as defined in GEOSS (Global Earth Observation System of Systems). Spectral scaling approaches are currently ranging from molecular to ecosystem or even biome scales. We discuss the use of field spectroscopy in relation to supporting large-scale ecosystem and ecotone inventorying, in particular the retrieval of biochemical and structural attributes of vegetation. First, attention will be put on using an object-relational database for the structured compilation of field spectral measurements and corresponding metadata. Spectral libraries have been collected over a wide variety of natural and man-made targets and their sampling scheme is discussed. Second, recent advances in reflectance and radiance terminology for field spectrometers are discussed, propagating the use of spectral albedo. Advanced measurement instrumentation and facilities are presented that complement solar reflective measurements with the angular, thermal and plant fluorescence domains. Further, experiments measuring leaf albedo, transmittance and absorbtance are discussed using examples from a wide range of ecosystems and their ecotones. Finally, we discuss scaling approaches from field measurements to airborne and spaceborne mapping methods, demonstrating the wide use of field spectrometers for environmental applications. We conclude on the importance of using field spectrometers over the past one and a half decades at our institutions

    Correction of the diffuse influence in spectrodirectional measurements

    Full text link
    Spectro-directional surface measurements can either be performed in the field or within a laboratory setup. Laboratory measurements have the advantage of constant illumination and neglectable atmospheric disturbances. On the other hand, artificial light sources are usually less parallel and less homogeneous than the clear sky solar illumination. To account for these differences and for determining for which targets a replacement of field by laboratory experiments is indeed feasible, a quantitative comparison is a prerequisite. Currently, there exist no systematic comparisons of field and laboratory measurements using the same targets. In this study we concentrate on the difference in spectro-directional field and laboratory data of the same target due to diffuse illumination and applied a correction term proposed by (Martonchik, 1994). Spectro-directional data were obtained with a GER3700 spectroradiometer. Additionally, a MFR sun photometer directly observed the total incoming diffuse irradiance. In the laboratory, a 1000W brightness-stabilized quartz tungsten halogen lamp was used. For the first direct comparison of field and laboratory measurements, we used an inert and highly anisotropic target with high angular anisotropy. Analysis showed that the diffuse illumination in the field is leading to a higher total reflectance and less pronounced angular anisotropy

    Comparison of Field and Laboratory Spectrodirectional Measurements Using an Artificial Target

    No full text
    ABSTRACT Spectro-directional surface measurements can either be performed in the field or within a laboratory setup. Laboratory measurements have the advantage of constant illumination and neglectable atmospheric disturbances. On the other hand, artificial light sources are usually less parallel and less homogeneous than the clear sky solar illumination. To account for these differences and for determining for which targets a replacement of field by laboratory experiments is indeed feasible, a quantitative comparison is a prerequisite. Currently, there exists no systematic comparison of field and laboratory measurements using the same targets. In this study we concentrate on the difference in spectro-directional field and laboratory data of the same target due to diffuse illumination. The field data were corrected for diffuse illumination following the proposed procedure by Martonchik 1 . Spectro-directional data were obtained with a GER3700 spectroradiometer. In the field, a MFR sun photometer directly observed the total incoming diffuse irradiance. In the laboratory, a 1000W brightness-stabilized quartz tungsten halogen lamp was used. For the first direct comparison of field and laboratory measurements, we used an artificial and inert target with high angular anisotropy. Analysis shows that the diffuse illumination in the field is leading to a higher total reflectance and less pronounced angular anisotropy

    Comparison of field and laboratory spectro-directional measurements using a standard artificial target

    Full text link
    Spectro-directional surface measurements can either be performed in the field or within a laboratory setup. Laboratory measurements have the advantage of constant illumination and neglectable atmospheric disturbances. On the other hand, artificial light sources are usually less parallel and less homogeneous than the clear sky solar illumination. To account for these differences and for determining for which targets a replacement of field by laboratory experiments is indeed feasible, a quantitative comparison is a prerequisite. Currently, there exists no systematic comparison of field and laboratory measurements using the same targets. In this study we concentrate on the difference in spectro-directional field and laboratory data of the same target due to diffuse illumination. The field data were corrected for diffuse illumination following the proposed procedure by Martonchik . Spectro-directional data were obtained with a GER3700 spectroradiometer. In the field, a MFR sun photometer directly observed the total incoming diffuse irradiance. In the laboratory, a 1000W brightness-stabilized quartz tungsten halogen lamp was used. For the first direct comparison of field and laboratory measurements, we used an artificial and inert target with high angular anisotropy. Analysis shows that the diffuse illumination in the field is leading to a higher total reflectance and less pronounced angular anisotropy

    Comparison of Field and Laboratory Spectrodirectional Measurements Using an Artificial Target

    No full text
    ABSTRACT Spectro-directional surface measurements can either be performed in the field or within a laboratory setup. Laboratory measurements have the advantage of constant illumination and neglectable atmospheric disturbances. On the other hand, artificial light sources are usually less parallel and less homogeneous than the clear sky solar illumination. To account for these differences and for determining for which targets a replacement of field by laboratory experiments is indeed feasible, a quantitative comparison is a prerequisite. Currently, there exists no systematic comparison of field and laboratory measurements using the same targets. In this study we concentrate on the difference in spectro-directional field and laboratory data of the same target due to diffuse illumination. The field data were corrected for diffuse illumination following the proposed procedure by Martonchik 1 . Spectro-directional data were obtained with a GER3700 spectroradiometer. In the field, a MFR sun photometer directly observed the total incoming diffuse irradiance. In the laboratory, a 1000W brightness-stabilized quartz tungsten halogen lamp was used. For the first direct comparison of field and laboratory measurements, we used an artificial and inert target with high angular anisotropy. Analysis shows that the diffuse illumination in the field is leading to a higher total reflectance and less pronounced angular anisotropy
    corecore