32 research outputs found

    Individual and Combined Releases of Muscidifurax raptor and M. raptorellus (Hymenoptera: Pteromalidae) as a Biological Control Tactic Targeting House Flies in Dairy Calf Facilities

    Get PDF
    The impact of commercially reared house fly parasitoids released into nine dairy calf coverall facilities were evaluated over 3 yr. Individual and equally mixed ratios of the pteromalid parasitoids Muscidifurax raptor Girault and Saunders and M. raptorellus Kogan and Legner were released at a rate of 500 parasitoids per calf per week for 8 wk. Prerelease, release, and postrelease parasitism was monitored using nearly 100,000 sentinel house fly, Musca domestica L., pupae during the 3 yr study. In general, very few adult parasitoids were recovered during the prerelease period and on the no-release farms during any period. However, considerable numbers of M. raptor and M. raptorellus were recovered from sentinel pupae on respective release farms. As expected, the greatest successful parasitism occurred during release periods, with a drop during postrelease periods. High successful parasitism and uneclosed pupae on M. raptorellus release farms suggests that this parasitoid was aggressive in attacking hosts with progeny production at approximately four wasps per pupa. Solitary releases of M. raptor provided sentinel mortality between 31 and 38%, whereas sentinel mortality on M. raptorellus-release farms was double, at 59-80%. Using mixed releases of the two species, overall fly mortality was slightly lower than that observed on M. raptorellus-only farms. This study documents the advantage of releasing M. raptorellus rather than M. raptor on New York dairy calf facilities, as supported by higher parasitism rates and lower costs (35-75%) for purchase of these gregarious wasps, as 75-80% fewer parasitized pupae are needed to achieve similar adult parasitoid level

    Overly honest data repository development

    Get PDF
    After a year of development, the library at the University of Illinois at Urbana-Champaign has launched a repository, called the Illinois Data Bank (https://databank.illinois.edu/), to provide Illinois researchers with a free, self-serve publishing platform that centralizes, preserves, and provides persistent and reliable access to Illinois research data. This article presents a holistic view of development by discussing our overarching technical, policy, and interface strategies. By openly presenting our design decisions, the rationales behind those decisions, and associated challenges this paper aims to contribute to the library community’s work to develop repository services that meet growing data preservation and sharing needs.Ope

    Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays

    Get PDF
    Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using forty plasma samples from convalescent individuals with mild-to-moderate COVID-19: four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate ELISA-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor, human angiotensin converting enzyme 2 (hACE2). Vero, Vero E6, HEK293T expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81–0.89) and ranged within 3.4-fold. The live-virus assay and LV-pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers: 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike and RBD (r = 0.63–0.89), but moderately correlated with nucleoprotein IgG (r = 0.46–0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV-pseudovirus assay and LV-pseudovirus assay with HEK293T/hACE2 cells in low and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms. 24

    All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe

    Get PDF
    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV energy range with a wide field of view, good spectral resolution, and polarization sensitivity. Therefore, AMEGO is key in the study of multimessenger astrophysical objects that have unique signatures in the gamma-ray regime, such as neutron star mergers, supernovae, and flaring active galactic nuclei. The order-of-magnitude improvement compared to previous MeV missions also enables discoveries of a wide range of phenomena whose energy output peaks in the relatively unexplored medium-energy gamma-ray band

    27 years of prenatal diagnosis for Huntington disease in the United Kingdom.

    Get PDF
    PURPOSE: There is little long-term, population-based data on uptake of prenatal diagnosis for Huntington disease (HD), a late-onset autosomal dominant neurodegenerative disorder, and the effect of the availability of preimplantation genetic diagnosis (PGD) on families' decisions about conventional prenatal diagnosis is not known. We report trends in prenatal diagnosis and preimplantation diagnosis for HD in the United Kingdom since services commenced. METHODS: Long-term UK-wide prospective case record-based service evaluation in 23 UK Regional Genetic Centres 1988-2015, and four UK PGD centers 2002-2015. RESULTS: From 1988 to 2015, 479 prenatal diagnoses were performed in the UK for HD. An exclusion approach was used in 150 (31%). The annual rate of HD prenatal diagnosis has remained around 18 (3.5/million) over 27 years, despite a steady increase in the use of PGD for HD since 2002. CONCLUSION: Although increasing number of couples are choosing either direct or exclusion PGD to prevent HD in their offspring, both direct and exclusion prenatal diagnosis remain important options in a health system where both PGD and prenatal diagnosis are state funded. At-risk couples should be informed of all options available to them, preferably prepregnancy

    New filovirus disease classification and nomenclature.

    Get PDF
    The recent large outbreak of Ebola virus disease (EVD) in Western Africa resulted in greatly increased accumulation of human genotypic, phenotypic and clinical data, and improved our understanding of the spectrum of clinical manifestations. As a result, the WHO disease classification of EVD underwent major revision

    Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels

    Get PDF
    Here we report on a mesocom study performed to compare the top-down impact of microphagous and macrophagous zooplankton on phytoplankton. We exposed a species-rich, summer phytoplankton assemblage from the mesotrophic Lake Schöhsee (Germany) to logarithmically scaled abundance gradients of the microphagous cladoceran Daphnia hyalina×galeata and of a macrophagous copepod assemblage. Total phytoplankton biomass, chlorophyll a and primary production showed only a weak or even insignificant response to zooplankton density in both gradients. In contrast to the weak responses of bulk parameters, both zooplankton groups exerted a strong and contrasting influence on the phytoplankton species composition. The copepods suppressed large phytoplankton, while nanoplanktonic algae increased with increasing copepod density. Daphnia suppressed small algae, while larger species compensated in terms of biomass for the losses. Autotrophic picoplankton declined with zooplankton density in both gradients. Gelatinous, colonial algae were fostered by both zooplankton functional groups, while medium-sized (ca. 3,000 µm3), non-gelatinous algae were suppressed by both. The impact of a functionally mixed zooplankton assemblage became evident when Daphnia began to invade and grow in copepod mesocosms after ca. 10 days. Contrary to the impact of a single functional group, the combined impact of both zooplankton groups led to a substantial decline in total phytoplankton biomass

    Complementary impact of copepods and cladocerans on phytoplankton

    Get PDF
    The differences in the impact of two major groups of herbivorous zooplankton (Cladocera and Copepoda) on summer phytoplankton in a mesotrophic lake were studied. Field experiments were performed in which phytoplankton were exposed to different densities of two major types of herbivorous zooplankton, cladocerans and copepods. Contrary to expectation, neither of the two zooplankton groups significantly reduced phytoplankton biomass. However, there were strong and contrasting impacts on phytoplankton size structure and on individual taxa. Cladocerans suppressed small phytoplankton, while copepods suppressed large phytoplankton. The unaffected size classes compensated for the loss of those affected by enhanced growth. After contamination of the copepod mesocosms with the cladoceran Daphnia, the combined impact of both zooplankton groups caused a decline in total phytoplankton biomass

    Usability of an At-Home Anterior Nares SARS-CoV-2 RT-PCR Sample Collection Kit: Human Factors Feasibility Study

    No full text
    BackgroundReadily available testing for SARS-CoV-2 is necessary to mitigate COVID-19 disease outbreaks. At-home collection kits, in which samples are self-collected without requiring a laboratory or clinic visit and sent to an external laboratory for testing, can provide convenient testing to those with barriers to access. They can prevent unnecessary exposure between patient and clinical staff, increase access for patients with disabilities or remote workers, and decrease burdens on health care resources, such as provider time and personal protective equipment. Exact Sciences developed an at-home collection kit for samples to be tested to detect SARS-CoV-2 that includes an Instructions for Use (IFU) document, which guides people without prior experience on collecting a nasal swab sample. Demonstrating successful sample collection and usability is critical to ensure that these samples meet the same high-quality sample collection standards as samples collected in clinics. ObjectiveThe aim of this study was to determine the usability of a SARS-CoV-2 at-home nasal swab sample collection kit. MethodsA human factors usability study was conducted with 30 subjects without prior medical, laboratory, or health care training and without COVID-19 sample self-collection experience. Subjects were observed while they followed the IFU for the at-home sample collection portion of the SARS-CoV-2 test in a setting that simulated a home environment. IFU usability was further evaluated by requiring the subjects to complete a survey, answer comprehension questions, provide written feedback, and respond to questions from the observer about problems during use. ResultsAll 30 subjects successfully completed the sample collection process, and all 30 samples were determined by reverse transcription–polymerase chain reaction (RT-PCR) testing to meet quality standards for SARS-CoV-2 testing. The subjects’ written feedback and comments revealed several recommendations to improve the IFU. ConclusionsThe study demonstrated the overall usability of an at-home SARS-CoV-2 collection kit. Various feedback mechanisms provided opportunities to improve the wording and graphics for some critical tasks, including placing the label correctly on the tube. A modified IFU was prepared based on study outcomes

    DNA methylation profiles in individuals with rare, atypical 7q11.23 CNVs correlate with GTF2I and GTF2IRD1 copy number

    No full text
    Abstract Williams-Beuren syndrome (WBS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders caused by deletion and duplication of a 1.5 Mb region that includes at least five genes with a known role in epigenetic regulation. We have shown that CNV of this chromosome segment causes dose-dependent, genome-wide changes in DNA methylation, but the specific genes driving these changes are unknown. We measured genome-wide whole blood DNA methylation in six participants with atypical CNV of 7q11.23 (three with deletions and three with duplications) using the Illumina HumanMethylation450k array and compared their profiles with those from groups of individuals with classic WBS or classic Dup7 and with typically developing (TD) controls. Across the top 1000 most variable positions we found that only the atypical rearrangements that changed the copy number of GTF2IRD1 and/or GTF2I (coding for the TFII-IRD1 and TFII-I proteins) clustered with their respective syndromic cohorts. This finding was supported by results from hierarchical clustering across a selection of differentially methylated CpGs, in addition to pyrosequencing validation. These findings suggest that CNV of the GTF2I genes at the telomeric end of the 7q11.23 interval is a key contributor to the large changes in DNA methylation that are seen in blood DNA from our WBS and Dup7 cohorts, compared to TD controls. Our findings suggest that members of the TFII-I protein family are involved in epigenetic processes that alter DNA methylation on a genome-wide level
    corecore