4 research outputs found

    Gremlin1 preferentially binds to Bone Morphogenetic Protein-2 (BMP-2) and BMP-4 over BMP-7

    Get PDF
    Gremlin (Grem1) is a member of the DAN family of secreted bone morphogenetic protein (BMP) antagonists. Bone morphogenetic protein-7 (BMP-7) mediates protective effects during renal fibrosis associated with diabetes and other renal diseases. The pathogenic mechanism of Grem1 during diabetic nephropathy (DN) has been suggested to be binding and inhibition of BMP-7. However, the precise interactions between Grem1, BMP-7 and other BMPs have not been accurately defined. In the present study, we show the affinity of Grem1 for BMP-7 is lower than that of BMP-2 and BMP-4, using a combination of surface plasmon resonance and cell culture techniques. Using kidney proximal tubule cells and HEK (human embryonic kidney)-293 cell Smad1/5/8 phosphorylation and BMP-dependent gene expression as readouts, Grem1 consistently demonstrated a higher affinity for BMP-2&amp;gt;BMP-4&amp;gt;BMP-7. Cell-associated Grem1 did not inhibit BMP-2- or BMP-4-mediated signalling, suggesting that Grem1–BMP-2 binding occurred in solution, preventing BMP receptor activation. These data suggest that Grem1 preferentially binds to BMP-2 and this may be the dominant complex in a disease situation where levels of Grem1 and BMPs are elevated.</jats:p

    Biochanin A: A Novel Bioactive Multifunctional Compound from Nature

    No full text
    Natural products (NPs) will continue to serve humans as matchless source of novel drug leads and inspiration for the synthesis of non-natural drugs. As our scientific understanding of 'nature' is rapidly expanding, it would be worthwhile to illuminate the pharmacological distinctions of NPs to the scientific community and public. Flavonoids have long fascinated scientists with their remarkable structural diversity as well as biological functions. Consequently, this review aims to shed light on the sources and pharmacological significance of a dietary isoflavone, biochanin A, which has been recently emerged as multitargeted and multifunctional guardian of human health. Biochanin A possesses anti-inflammatory, anticancer, neuroprotective, antioxidant, anti-microbial, and hepatoprotective properties. This anticancer isoflavone combat cancer development by inducing apoptosis, inhibition of metastasis and arresting cell cycle via targeting several deregulated signaling pathways of cancer. It fights inflammation by blocking the expression and activity of pro-inflammatory cytokines via modulation of NF-κB and MAPKs. Biochanin A acts as a neuroprotective agent by inhibiting microglial activation and apoptosis of neurons. As biochanin A has potential to modulate several biological networks, thus, we anticipate that this therapeutically potent compound might serve as novel lead for drug development in the near future
    corecore