1,018 research outputs found

    An Open-Sourced Statistical Application for Identifying Complex Toxicological Interactions of Environmental Pollutants

    Get PDF
    The rising number of chemicals that humans are exposed to on a daily basis, as well as advances in biomonitoring and detection technologies have highlighted the diversity of individual exposure profiles (complex body burdens). To address this, the toxicological sciences have begun to shift away from examining toxic agents or stressors individually to focusing on more complex models with multiple agents or stressors present. Literature on interactions between chemicals is fairly limited in comparison with dose-response studies on individual toxicants, which is largely due to experimental and statistical challenges. Experimental designs capable of identifying these complex interactions are often avoided or not evaluated to their fullest potential because of the difficulty associated with appropriate analysis as well as logistical factors. To assist with statistical analysis of these types of experiments, an online, open-sourced statistical application was created for investigators to use to analyze and interpret potential toxicant interactions in laboratory experimental data using a full-factorial three-way analysis of variance (ANOVA). This model utilizes backward selection on interaction terms to model main effects and interactions

    Predator water balance alters intraguild predation in a streamsidefood web

    Get PDF
    Previous work suggests that animal water balance can influence trophic interactions, with predators increasing their consumption of water-laden prey to meet water demands.But it is unclear how the need for water interacts with the need for energy to drive trophic interactions under shifting conditions. Using manipulative field experiments, we show that water balance influences the effects of top predators on prey with contrasting ratios of water and energy, altering the frequency of intraguild predation. Water-stressed top predators (large spiders) negatively affect water-laden basal prey (crickets), especially male prey with higher water content, whereas alleviation of water limitation causes top predators to switch to negatively affecting energy-rich midlevel predators (small spiders). Thus, the relative water and energy content of multiple prey, combined with the water demand of the top predator, influences trophic interactions in ways that can alter the strength of intraguild predation. These findings underscore the need for integration of multi resource approaches for understanding implications of global change for food webs

    Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Get PDF
    BACKGROUND: Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. METHODS: Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS: Statistical analyses revealed 3,327 (35.3%) differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. CONCLUSION: The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to the chondrogenic phenotype of normal articular chondrocytes

    A Compromised Liver Alters Polychlorinated Biphenyl-Mediated Toxicity

    Get PDF
    Exposure to environmental toxicants namely polychlorinated biphenyls (PCBs) is correlated with multiple health disorders including liver and cardiovascular diseases. The liver is important for both xenobiotic and endobiotic metabolism. However, the responses of an injured liver to subsequent environmental insults has not been investigated. The current study aims to evaluate the role of a compromised liver in PCB-induced toxicity and define the implications on overall body homeostasis. Male C57Bl/6 mice were fed either an amino acid control diet (CD) or a methionine-choline deficient diet (MCD) during the 12-week study. Mice were subsequently exposed to either PCB126 (4.9 mg/kg) or the PCB mixture, Arcolor1260 (20 mg/kg) and analyzed for inflammatory, calorimetry and metabolic parameters. Consistent with the literature, MCD diet-fed mice demonstrated steatosis, indicative of a compromised liver. Mice fed the MCD-diet and subsequently exposed to PCB126 showed observable wasting syndrome leading to mortality. PCB126 and Aroclor1260 exposure worsened hepatic fibrosis exhibited by the MCD groups. Interestingly, PCB126 but not Aroclor1260 induced steatosis and inflammation in CD-fed mice. Mice with liver injury and subsequently exposed to PCBs also manifested metabolic disturbances due to alterations in hepatic gene expression. Furthermore, PCB exposure in MCD-fed mice led to extra-hepatic toxicity such as upregulated circulating inflammatory biomarkers, implicating endothelial cell dysfunction. Taken together, these results indicate that environmental pollution can exacerbate toxicity caused by diet-induced liver injury which may be partially due to dysfunctional energy homeostasis. This is relevant to PCB-exposed human cohorts who suffer from alcohol or diet-induced fatty liver diseases

    Critical values for Lawshe's content validity ratio: revisiting the original methods of calculation

    Get PDF
    YesThe content validity ratio originally proposed by Lawshe is widely used to quantify content validity and yet methods used to calculate the original critical values were never reported. Methods for original calculation of critical values are suggested along with tables of exact binomial probabilities

    Polymer-coated bioactive glass S53P4 increases VEGF and TNF expression in an induced membrane model in vivo

    Get PDF
    The two-stage induced-membrane technique for treatment of large bone defects has become popular among orthopedic surgeons. In the first operation, the bone defect is filled with poly(methyl methacrylate) (PMMA), which is intended to produce a membrane around the implant. In the second operation, PMMA is replaced with autograft or allograft bone. Bioactive glasses (BAGs) are bone substitutes with bone-stimulating and angiogenetic properties. The aim of our study was to evaluate the inductive vascular capacity of BAG-S53P4 and poly(lactide-co-glycolide) (PLGA)-coated BAG-S53P4 for potential use as bone substitutes in a single-stage induced-membrane technique. Sintered porous rods of BAG-S53P4, PLGA-coated BAG-S53P4 and PMMA were implanted in the femur of 36 rabbits for 2, 4 and 8 weeks. The expression of vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF) in the induced membranes of implanted materials was analyzed with real-time quantitative polymerase chain reaction and compared with histology. Both uncoated BAG-S53P4 and PLGA-coated BAG-S53P4 increase expression of VEGF and TNF, resulting in higher amounts of capillary beds, compared with the lower expression of VEGF and less capillary beads observed for negative control and PMMA samples. A significantly higher expression of VEGF was observed for PLGA-coated BAG-S53P4 than for PMMA at 8 weeks (p <0.036). VEGF and TNF expression in the induced membrane of BAG-S53P4 and PLGA-coated BAG-S53P4 is equal or superior to PMMA, the "gold standard" material used in the induced-membrane technique. Furthermore, the VEGF and TNF expression for PLGA-coated BAG-S53P4 increased during follow-up.Peer reviewe

    Geographical patterns in blood lead in relation to industrial emissions and traffic in Swedish children, 1978–2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood lead concentrations (B-Pb) were measured in 3 879 Swedish school children during the period 1978–2007. The objective was to study the effect of the proximity to lead sources based on the children's home and school location.</p> <p>Methods</p> <p>The children's home address and school location were geocoded and their proximity to a lead smelter and major roads was calculated using geographical information system (GIS) software. All the statistical analyses were carried out using means of generalized log-linear modelling, with natural-logarithm-transformed B-Pb, adjusted for sex, school year, lead-exposing hobby, country of birth and, in the periods 1988–1994 and 1995–2007, parents' smoking habits.</p> <p>Results</p> <p>The GIS analysis revealed that although the emission from the smelter and children's B-Pb levels had decreased considerably since 1978, proximity to the lead smelter continued to affect levels of B-Pb, even in recent years (geometric mean: near smelter: 22.90 μg/l; far from smelter 19.75 μg/l; p = 0.001). The analysis also revealed that proximity to major roads noticeably affected the children's B-Pb levels during the period 1978–1987 (geometric mean near major roads: 44.26 μg/l; far from roads: 38.32 μg/l; p = 0.056), due to the considerable amount of lead in petrol. This effect was, however, not visible after 1987 due to prohibition of lead in petrol.</p> <p>Conclusion</p> <p>The results show that proximity to the lead smelter still has an impact on the children's B-Pb levels. This is alarming since it could imply that living or working in the vicinity of a former lead source could pose a threat years after reduction of the emission. The analysis also revealed that urban children exposed to lead from traffic were only affected during the early period, when there were considerable amounts of lead in petrol, and that the prohibition of lead in petrol in later years led to reduced levels of lead in the blood of urban children.</p

    Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling

    Get PDF
    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA–synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense
    • …
    corecore