
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Veterinary Science Faculty Publications Veterinary Science 

9-14-2009 

Transcriptional profiling differences for articular cartilage and Transcriptional profiling differences for articular cartilage and 

repair tissue in equine joint surface lesions repair tissue in equine joint surface lesions 

Michael J. Mienaltowski 
University of South Florida 

Liping Huang 
University of Kentucky, Liping.Huang@uky.edu 

David D. Frisbie 
Colorado State University - Fort Collins 

C. Wayne McIlwraith 
Colorado State University - Fort Collins 

Arnold J. Stromberg 
University of Kentucky, stromberg@uky.edu 

See next page for additional authors 

Follow this and additional works at: https://uknowledge.uky.edu/gluck_facpub 

 Part of the Veterinary Medicine Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Mienaltowski, Michael J.; Huang, Liping; Frisbie, David D.; McIlwraith, C. Wayne; Stromberg, Arnold J.; 
Bathke, Arne C.; and Macleod, James N., "Transcriptional profiling differences for articular cartilage and 
repair tissue in equine joint surface lesions" (2009). Veterinary Science Faculty Publications. 15. 
https://uknowledge.uky.edu/gluck_facpub/15 

This Article is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been 
accepted for inclusion in Veterinary Science Faculty Publications by an authorized administrator of UKnowledge. 
For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232562378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gluck_facpub
https://uknowledge.uky.edu/gluck
https://uknowledge.uky.edu/gluck_facpub?utm_source=uknowledge.uky.edu%2Fgluck_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/760?utm_source=uknowledge.uky.edu%2Fgluck_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/gluck_facpub/15?utm_source=uknowledge.uky.edu%2Fgluck_facpub%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Authors 
Michael J. Mienaltowski, Liping Huang, David D. Frisbie, C. Wayne McIlwraith, Arnold J. Stromberg, Arne C. 
Bathke, and James N. Macleod 

Transcriptional profiling differences for articular cartilage and repair tissue in equine 
joint surface lesions 
Notes/Citation Information 
Published in BMC Medical Genomics, v. 2, 60. 

© 2009 Mienaltowski et al; licensee BioMed Central Ltd. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited. 

Digital Object Identifier (DOI) 
http://dx.doi.org/10.1186/1755-8794-2-60 

This article is available at UKnowledge: https://uknowledge.uky.edu/gluck_facpub/15 

http://creativecommons.org/licenses/by/2.0
https://uknowledge.uky.edu/gluck_facpub/15


BioMed Central

Page 1 of 14
(page number not for citation purposes)

BMC Medical Genomics

Open AccessResearch article
Transcriptional profiling differences for articular cartilage and 
repair tissue in equine joint surface lesions
Michael J Mienaltowski*1,4, Liping Huang2, David D Frisbie3, 
C Wayne McIlwraith3, Arnold J Stromberg2, Arne C Bathke2 and 
James N MacLeod1

Address: 1University of Kentucky, Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, Lexington, KY, 40546-0099, USA, 
2University of Kentucky, Department of Statistics, 817 Patterson Office Tower, Lexington, KY, 40506-0027, USA, 3Colorado State University, 
College of Veterinary Medicine, Gail Holmes Equine Orthopaedic Research Center, Ft. Collins, CO, 80523-1678, USA and 4University of South 
Florida, College of Medicine, Department of Orthopaedics & Sports Medicine, 12901 Bruce B. Downs Blvd, MDC Box 11, Tampa, FL, 33612, USA

Email: Michael J Mienaltowski* - mmienalt@health.usf.edu; Liping Huang - Liping.Huang@uky.edu; 
David D Frisbie - David.Frisbie@ColoState.edu; C Wayne McIlwraith - Wayne.McIlwraith@ColoState.edu; 
Arnold J Stromberg - stromberg@uky.edu; Arne C Bathke - arne@uky.edu; James N MacLeod - jnmacleod@uky.edu

* Corresponding author    

Abstract
Background: Full-thickness articular cartilage lesions that reach to the subchondral bone yet are
restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is
structurally and biomechanically compromised relative to normal articular cartilage. The objective
of this study was to evaluate transcriptional differences between chondrocytes of normal articular
cartilage and repair tissue cells four months post-microfracture.

Methods: Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal
femurs of four adult horses followed by subchondral microfracture. Four months postoperatively,
repair tissue from the lesion site and grossly normal articular cartilage from within the same
femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly
amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired
comparisons matched by limb and horse were made with a dye-swap experimental design with
validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR).

Results: Statistical analyses revealed 3,327 (35.3%) differentially expressed probe sets. Expression
of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue
corroborate earlier studies. Other changes in gene expression previously unassociated with
cartilage repair were also revealed and validated by RT-qPCR.

Conclusion: The magnitude of divergence in transcriptional profiles between normal
chondrocytes and the cells that populate repair tissue reveal substantial functional differences
between these two cell populations. At the four-month postoperative time point, the relative
deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate
that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated
differentiation to the chondrogenic phenotype of normal articular chondrocytes.
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Background
Full-thickness articular cartilage defects that penetrate into
the subchondral bone undergo a repair process character-
ized by the in-growth of fibrous tissue within the lesion
[1,2]. Initially, blood from the bone marrow below the
articular cartilage fills the defect and forms a fibrin clot
[2,3]. Subsequent to vascularization of the defect is the
proliferation of granulation tissue over the first 10 days as
the clot scleroses [2,3]. The granulation tissue is rich in
type I collagen fibers and the cells within the tissue have
been traced to a mesenchymal origin [2,4-6]. Within full-
thickness defects generated by arthrotomy and controlled
drilling into the subchondral bone, not more than 30% of
total collagen content is type II four months after surgery
[4]. Type I fibrillar collagen predominates the extracellular
matrix in repair tissue of most full-thickness defects with-
out graft or transplant [4,7]. Decreases in proteoglycan
content also occur which render the repair tissue more
rigid and unable to fully protect the joint from biome-
chanical stress [1,4,5,7]. In addition, morphological dif-
ferences exist between the cells in repair tissue and the
chondrocytes of skeletally mature articular cartilage [3].
Repair tissue anchors incompletely to the surrounding
articular cartilage matrix adjacent to the lesion [2]. While
repair tissue seems to be primarily derived from stromal
cells of mesenchymal origin, the functional similarity of
these cells to articular chondrocytes is not completely
described. Repair tissue is often called fibrocartilage or
hyaline-like repair cartilage, though it does not necessarily
contain an actual chondrocyte cell population.

The engineering of repair tissue cells is widely investigated
in an attempt to improve the chondral surface within
injured joints. Techniques like microfracture have been
developed in an effort to facilitate healing of the articular
surface with cells from the subchondral bone [6,8-13].
There is also a focus on manipulating repair tissue,
implanted stem cells, and even autologous chondrocyte
transplants in an effort to generate more hyaline-like phe-
notypes [14,15]. Assessment of the similarity of repair tis-
sue to cartilage is typically done by monitoring
established matrix biomarkers, such as type I collagen,
type II collagen, and aggrecan core protein. Even with the
introduction of growth factors or scaffolds of mainte-
nance proteins associated with the chondrocyte pheno-
type, the repair tissue is still unable to completely restore
the structural and biomechanical integrity of the joint sur-
face, consistent with the limited capacity of articular carti-
lage to heal.

In this study, we used an equine cDNA microarray con-
taining 9,413 probe sets to compare gene expression pro-
files of grossly normal articular cartilage and repair tissue
occupying medial femoral condyle full-thickness defects
in the femorotibial joints of skeletally mature horses four

months after a microfracture surgical procedure. The
hypothesis tested was that the cells occupying repair tissue
four months postoperatively are not identical to articular
chondrocytes. Consequently, we would expect the tran-
scriptomes of cells from each tissue to have substantial
differences, especially with respect to the expression of
cartilage matrix biomarkers.

Methods
Animals
Articular cartilage defects were made in the axial weight-
bearing portion of the medial femoral condyles of four
adult Quarterhorses (2-3 years) as previously described by
Frisbie et al. [6,16] within the guidelines set forth in an
Institutional Animal Care and Use Committee-approved
protocol at Colorado State University. Briefly, one-cm2

full-thickness articular cartilage lesions were arthroscopi-
cally made bilaterally which included the removal of the
calcified cartilage layer. This was followed by microfrac-
ture penetration of the subchondral bone to create perfo-
rations with an approximate spacing of 2-3 mm and depth
of 3 mm uniformly within the defect site. The horses were
maintained for four months in box stalls (3.65 m × 3.65
m) with controlled hand walking. After euthanasia, repair
tissue from the lesions and full-thickness grossly normal
articular cartilage from within the same joint were col-
lected from each stifle, rinsed in sterile phosphate-buff-
ered saline, snap-frozen in liquid nitrogen, and stored at -
80°C.

Histology
Samples were also collected and prepared for histological
analyses as described in Frisbie et al. [17]. Briefly, repair
tissue and adjacent cartilage were trimmed with a stand-
ard bone saw and Exakt bone saw with a diamond chip
blade (Exakt Technologies, Oklahoma City, OK, USA),
placed into histological cassettes, and then fixed in 10%
neutral buffered formalin for a minimum of 2 days. Sam-
ples were then applied to 0.1% EDTA/3%HCl decalcifica-
tion solution (Thermo Scientific Richard-Allan
Decalcifying Solution, cat. no. 8340) which was replen-
ished every three days until specimens were decalcified.
Specimens were embedded in paraffin and sectioned at 5
μm. Sections were stained with hematoxylin and eosin or
with Safranin-O.

Total RNA Isolation and Linear Amplification
Normal articular cartilage was reduced to powder with a
BioPulverizer (BioSpec Products, Bartlesville, OK, USA)
under liquid nitrogen and total RNA was isolated as
described by MacLeod et al. [18,19]. Briefly, total RNA was
isolated in a buffer of 4 M guanidinium isothiocyanate,
0.1 M Tris-HCl, 25 mM EDTA (pH 7.5) with 1% (v/v) 2-
mercaptoethanol, followed by differential alcohol and
salt precipitations and then final purification using QIA-
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GEN RNeasy columns [18-21]. Repair tissue sample sizes
were minimal in size (10-50 mg). Repair tissue was placed
in QIAzol reagent (QIAGEN), cut into 1-mm3 slices, and
total RNA isolated using the QIAGEN RNeasy Lipid Tissue
Mini Kit. RNA quantification and quality assessments
were performed with a NanoDrop ND-1000 and a BioAn-
alyzer 2100 (Agilent, Eukaryotic Total RNA Nano Series
II). Total RNA (1 μg) from each tissue sample received one
round of linear amplification primed with oligo-dT (Inv-
itrogen - SuperScript RNA Amplification System) [22,23].
Two micrograms of amplified RNA were then used as a
template to create fluorescent dye-coupled single-
stranded aminoallyl-cDNA probes (Invitrogen - Super-
script Indirect cDNA Labeling System, Molecular Probes -
Alexa Fluor 555 and 647 Reactive Dyes). For each sample,
probes were coupled to both Alexa Fluor dyes individually
so that a dye swap comparison could be made.

Transcriptional Profiling
Microarray slides were printed with clones selected from a
cDNA library generated using equine articular cartilage
mRNA from a 15-month old Thoroughbred [24]. Micro-
array slides were pre- hybridized in 20% formamide, 5×
Denhardt's, 6× SSC, 0.1% SDS, and 25 μg/ml tRNA for 45
minutes. The slides were then washed five times in deion-
ized water, once in isopropanol, and spun dry at 700 g for
3 minutes [25]. Two labeled cDNA samples, one repair tis-
sue and the other normal cartilage from the same joint,
were combined with 1× hybridization buffer (Ambion, 1×
Slide Hybridization Buffer #1, cat. no. 8801), incubated
for 2 minutes at 95°C, and then applied to the slide under
a glass lifterslip for 48 hours at 42°C. All hybridizations
were performed in duplicate with a dye swap to eliminate
possible dye bias [26]. Sequential post-hybridization
washes were each for 5 minutes as follows: 1× SSC, 0.2%
SDS at 42°C; 0.1× SSC, 0.2% SDS at room temperature;
and twice with 0.1× SSC at room temperature. The slides
were then spun dry under argon gas at 700 g for 3 min-
utes. Each slide was coated once in DyeSaver 2 (Geni-
sphere) and allowed to dry for 10 minutes. Slides were
scanned using a GenePix 4100A scanner and spot intensi-
ties were computed using GENEPIX 6.0 image analysis
software (Axon Instruments/Molecular Devices).

Statistics and Analysis
Raw mean intensity data for each probe set pair of all the
microarray scans were statistically analyzed by planned
linear contrast [27] using SAS (SAS Institute, Cary, NC).
One sample t-tests were performed, which were followed
by a Benjamini-Hochberg correction based on a false dis-
covery rate of 2.2% for probe sets with a p-value < 0.01
[28]. Differences in the transcriptional profiling data
between repair tissue and articular cartilage were analyzed
based on a linear model formulation with fixed tissue and
dye effect, and random chip, horse, and leg effect. A dye
swap design was used, so for each available leg, the sum

of the two measurements corresponding to the articular
cartilage was subtracted from the sum of the measure-
ments corresponding to the repair tissue. Each intensity
measurement (I) is modeled statistically as:

with the components designated as follows: d, additive
effects due to dye (red or green); c, chip effect (1-16); t, tis-
sue (repair or normal); h, horse (1-4); l, leg (left or right);
E, statistical error. The dye swap design yields two out-
comes per location and tissue type. Thus, for each of the
eight locations corresponding to a particular leg of a par-
ticular horse, a new aggregated quantity is calculated that
takes into account all measurements related to this loca-
tion. The only remaining systematic effect represents the
expressional difference between tissues with remaining
statistical error. Since there were 4 horses with 2 femo-
rotibial joints per horse, eight such tissue differences were
evaluated. Gene identity was assigned for each microarray
ID from an internal annotation database through selec-
tion of either the best RNA RefSeq BLAST (E < 1 × 10-7) or
Protein RefSeq BLAST (E < 1 × 10-5) result [29-31]. Gene
ontology (GO) annotation was derived from batch que-
ries of the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) Bioinformatics tool or
manually through individual NCBI Entrez Gene queries
[32,33]. The human ortholog of each gene was predicted
and used for the determination of overrepresentation of
GO categories via Expression Analysis Systematic Explorer
(EASE) standalone software [32,34]. Statistical data, fold
change quantities, and GO annotations were managed
within an Excel spreadsheet (Microsoft, Redmond, WA).
Microarray data are available at the NCBI Gene Expression
Omnibus (GEO) under Series Accession GSE11760.

Validation of Microarray Hybridization Results with RT-
qPCR
Differential expression for selected genes was validated
using quantitative polymerase chain reactions (RT-qPCR).
Briefly, total RNA was reverse-transcribed into cDNA
using an oligo-dT primer with the Promega Reverse Tran-
scription System (Promega, cat. no. A3500). Quantitative
"real-time" PCR (7500 Sequence Detection and 7900 HT
Fast Real-Time PCR Systems, Applied Biosystems, Foster
City, CA) was performed using TaqMan Gene Expression
Master Mix (Applied Biosystems) and intron-spanning
primer/probe sets (Assays-by-Design, Applied Biosys-
tems) designed from equine genomic sequence data
(Ensembl - http://www.ensembl.org/Equus_caballus/
index.html; UCSC Genome Browser - http://
genome.ucsc.edu). Beta-2-microglobulin (B2M) and large
ribosomal protein P0 (RPLP0) were selected as endog-
enous control transcripts because they showed the great-
est stability for the sample set as defined by the geNorm
reference gene application (data not shown) [35]. Steady

I d c t h l E= + + + + +

http://www.ensembl.org/Equus_caballus/index.html
http://www.ensembl.org/Equus_caballus/index.html
http://genome.ucsc.edu
http://genome.ucsc.edu
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state levels of mRNA encoding type I procollagen
(COL1A2), type II procollagen (COL2A1), cartilage oligo-
meric matrix protein (COMP), dermatopontin (DPT),
fibroblast activation protein (FAP), and tenascin-C (TNC)
were selected for validation (Table 1). Amplification effi-
ciencies were measured by the default fit option of Lin-
RegPCR while maintaining the cycle threshold as a data
point within the measured regression line [36]. Since
amplification efficiencies for some of the genes were
determined to be different between sample groups (nor-
mal and repair) by paired t-test, mean group efficiencies
were utilized for adjustment of results for each gene (data
not shown) [37]. Relative expression levels of target genes
were normalized to the relative quantities of endogenous
control genes using geometric averaging with the geNorm
VBA applet [35]. For each gene of interest, mean fold
change was determined by first finding the difference in
transcript abundance between normal and repair samples
from each leg and then by determining the mean differ-
ence amongst all legs for that gene. Statistical analysis of
RT-qPCR results was performed with a general linear
model (GLM) strategy using SPSS software with consider-
ation for variables of horse, leg, and tissue. One-tail (α =
0.05) test of the hypothesis that microarray data are valid
was considered for tissue effect, which is the significance
reported. By the same GLM analyses, no significant
"within horse" leg effect was demonstrated for any of the
genes validated (data not shown).

Results
Repair tissue histology
Tissue samples were harvested four months after surgical
induction of full-thickness cartilage lesion with microfrac-
ture. Gross examination revealed repair tissue within each
lesion that was dimpled in appearance and not com-
pletely level with the articular surface (Figure 1A, D). His-

tologically, repair tissue generally had homogeneous
matrix architecture with elongated, flattened cells (Figure
1G) that interfaced with surrounding articular cartilage
(Figure 1H). Varying levels of repair tissue were noted
with some lesions having a poor response (Figure 1A-C),
while others appeared to respond better (Figure 1D-F).
Safranin-O staining demonstrated that the repair tissue
was generally proteoglycan-deficient relative to the adja-
cent normal articular cartilage surrounding the lesions
(Figure 1C), but there was variation with some repair tis-
sue samples showing evidence of proteoglycan content
(Figure 1F).

Overall level of differential gene expression
A total of 4,269 probe sets (45.4%) were differentially
expressed (p < 0.01; Figure 2A). A clear transcriptome
divergence was evident between the two tissue types (Fig-
ure 2B). After Benjamini-Hochberg correction, 3,327
(35.3%) significant probe sets remained (Figure 3). Of
these probe sets, 1,454 demonstrated greater transcript
abundance in repair tissue relative to grossly normal artic-
ular cartilage, and 1,873 demonstrated greater transcript
abundance in normal articular cartilage relative to repair
tissue. Assessment of probe set annotation produced
2,688 significant probe sets with known gene identities.
Correcting for redundancy where different probe sets
hybridize to the same mRNA transcript yielded 2,101
unique gene symbols. Of these, 858 gene symbols were
present at higher steady-state levels in repair tissue and are
designated repair > normal, while 1,243 of the gene sym-
bols are designated normal > repair (Figure 3).

Ontological differences
When significant probes are organized according to
molecular function ontology with a fold change threshold
of two, ontological categories of differentially abundant

Table 1: Primer nucleotide sequences used in RT-qPCR assays for genes described in the study.

Gene Name Gene Symbol Forward Primer Reverse Primer

Beta-2-microglobulin B2M 5-CGGGCTACTCTCCCTGACT-3 5-GTGACGTGAGTAAACCTGAACCTT-3

Ribosomal protein, large, P0 RPLP0 5-CTGATTACACCTTCCCACTTGCT-3 5-AGCCACAAATGCAGATGGATCA-3

Procollagen, type I, alpha 2 COL1A2 5-TGAGACTTAGCCACCCAGAGT-3 5-GCATCCATAGTGCATCCTTGATTAGG-3

Procollagen, type II, alpha 1 COL2A1 5-CTGGCTTCAAAGGCGAACAAG-3 5-GCACCTCTTTTGCCTTCTTCAC-3

Cartilage oligomeric matrix 
protein

COMP 5-CGAGCCCGGCATCCA-3 5-CCCAGGGCCTGTGGAG-3

Dermatopontin DPT 5-GGAGATCAACAGGGCTGGAAT-3 5-CCGCCACCAGTCCATTGTT-3

Fibroblast activation protein FAP 5-AGACTATCTTCTCATCCACGGAACA-3 5-CCGGATATGCCGTGGTTCTG-3

Tenascin-C TNC 5-TCAGCCATCACTACCAAGTTCAC-3 5-GAACCTCAGTAGCAGTCAAATCTCT-3
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transcripts emerge by EASE analyses (Tables 2 and 3). Cat-
egories statistically overrepresented in normal articular
cartilage include skeletal development and gly-
cosaminoglycan binding, which contain many of the con-
ventional cartilage biomarkers (Table 2). Protease and
endopeptidase inhibitor activities were also overrepre-
sented for normal cartilage; these categories contain
matrix metalloproteinase inhibitors essential to the main-

tenance of cartilage matrix (Table 2). In contrast, the cate-
gories statistically overrepresented in repair tissue
(immune response, cytoskeletal and cell component
organization, and histogenesis) are indicative of wound
healing or tissue re-modeling (Table 3). One shared over-
represented category is calcium ion binding, which is
involved with protein-folding conformation of matrix
molecules and chondrocyte differentiation, among other

Gross and histological assessment of repair tissueFigure 1
Gross and histological assessment of repair tissue. At the four month post-operative time point, gross assessment of 
the repair tissue indicated variations in the healing response (A, D). Moreover, the repair tissue was not fully congruent with 
the surrounding articular cartilage within each lesion (B, E). Histologically, variations in the repair resulted in elongated and flat-
tened cells as observed with H&E staining (G, 10×) surrounded by variable levels of proteoglycan-deficient matrix as assessed 
by Safranin-O staining (C, F). The interface between repair tissue and surrounding cartilage is evident (H, 20×). Representative 
lesions depicted are from Horse 4 (Left: A, B, C, G; Right: D, E, F, H). Scale bar: 5 mm in A, D; 2.50 mm in B, C, E, F; 250 
microns in G; 125 microns in H.

A B C

G

D E F

H
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Microarray profiling data distributionsFigure 2
Microarray profiling data distributions. The distribution of p-values for differential gene expression comparing articular 
cartilage to repair tissue using 8 replicates (4 left legs and 4 right legs from 4 horses) is demonstrated in a histogram (A); the 
column at the far left are those differentially expressed at p < 0.01 and represents 4269 probe sets, or 45.6% of the microarray. 
(B) A volcano plot illustrates the divergent distribution of probe sets between normal articular cartilage and repair tissue. Log2-
fold change differences of transcript abundance are represented across the horizontal axis; fold changes greater than 2-fold are 
located outside of the vertical dotted lines. Significance (-log10 p-value) is represented on the y-axis with p < 0.01 located above 
the blue horizontal line. Probe sets within the blue shaded region have a fold change ≥ 2 at p < 0.01 in normal articular cartilage 
relative to repair tissue. Probe sets within red shaded region have a fold change ≥ 2 at p < 0.01 in repair tissue relative to nor-
mal articular cartilage.

Flowchart of cDNA microarray data analysisFigure 3
Flowchart of cDNA microarray data analysis. Expression data were initially analyzed by planned linear contrast with a 
Benjamini-Hochberg correction yielding 35.3% of the probe sets on the microarray demonstrating significant differential gene 
expression (p < 0.01). Of these, 43.7% and 56.3% of the probe sets represented increased relative transcript abundance for 
repair tissue > normal cartilage and normal cartilage > repair tissue, respectively. When annotation is applied to these probe 
sets, 2688 (80.8%) have known gene symbols with a redundancy across this subset of probe sets equal to 21.8% yielding 2101 
unique gene symbols.

EQUINE cDNA MICROARRAY 9413 PROBE SETS

PLANNED LINEAR CONTRAST 
ANALYSIS: PAIRED T-TEST

4269 PROBE SETS WITH P < 0.01
FDR: 2.2%

BENJAMINI-HOCHBERG 
CORRECTION

3327 PROBE SETS WITH P < 0.01

TRANSCRIPT ABUNDANCE 
REPAIR > NORMAL:
1454 PROBE SETS

1243 UNIQUE

1049 PROBE SETS WITH 
KNOWN GENE SYMBOLS

858 UNIQUE

ANNOTATION

REPAIR > NORMAL

TRANSCRIPT ABUNDANCE 
NORMAL > REPAIR:
1873 PROBE SETS

NORMAL > REPAIR

1639 PROBE SETS WITH 
KNOWN GENE SYMBOLS
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functions. A second overrepresented category common to
the two tissue types was extracellular matrix component.
This result is quite plausible since extracellular matrix
(ECM) plays an essential role in defining the phenotypes
of both tissues. Functional differences are demonstrated
by individual transcript abundance for ECM components
involved in processes such as fibrillogenesis and prote-
oglycan synthesis which are further delineated below.

Individual genes
Expression differences for genes encoding biomarkers typ-
ically associated with normal articular cartilage and repair
tissue corroborate previous reported findings (Figure 4).
That is, transcript abundance for collagen types II and IX
were greater in normal articular cartilage relative to repair
tissue. The expression of type I collagen and several type-
I-associated collagen types (V, VI, XII, XV) were up-regu-

lated in repair tissue relative to normal articular cartilage.
Moreover, transcript abundance was greater in normal
cartilage for proteoglycans, an associated sulfotransferase,
non-collagenous adhesion proteins, and skeletal develop-
ment biomarkers linked to cartilage development. In con-
trast, transcripts were up-regulated in repair tissue for
Tenascin- C and matrix metalloproteinase 3, which are
both associated with wound healing.

Other genes with limited or no established functional
annotation in chondrocytes were also differentially
expressed between normal articular cartilage and repair
tissue. Within the angiogenesis category, transcripts
encoding vascular endothelial growth factor and the ser-
pin peptidase inhibitor SERPINE1 had higher steady state
levels in repair tissue (Figure 5). Also represented were
genes involved in cell adhesion, cell communication, skel-

Table 2: Overrepresented ontological categories for transcripts with >2-fold difference in normal articular cartilage versus repair 
tissue.

GO System Gene Category List Hits List Total Population Hits Population Total EASE Score

Cellular Component extracellular 69 380 244 2556 2.01E-08

Biological Process skeletal development 21 379 55 2575 0.00005

Molecular Function receptor activity 53 385 218 2611 0.00012

Cellular Component extracellular matrix 30 380 100 2556 0.00015

Biological Process development 82 379 394 2575 0.00036

Molecular Function signal transducer activity 81 385 393 2611 0.00059

Molecular Function calcium ion binding 34 385 134 2611 0.00129

Biological Process regulation of transcription (3) 82 379 410 2575 0.00134

Molecular Function glycosaminoglycan binding 12 385 31 2611 0.00318

Molecular Function endopeptidase inhibitor activity (2) 11 385 27 2611 0.00341

Molecular Function protease inhibitor activity 11 385 27 2611 0.00341

Cellular Component membrane (2) 148 380 842 2556 0.00553

Molecular Function steroid hormone receptor activity 7 385 13 2611 0.00668

Biological Process transcription 83 379 441 2575 0.00764

Molecular Function insulin-like growth factor binding 6 385 10 2611 0.00893

Redundant or similar categories were removed. When present, the number of redundant or similar categories are indicated in parentheses within 
the listed "gene category." "GO System" represents the major gene ontological system (i.e., cellular component, biological process, or molecular 
function). "Gene category" shows a descriptive term shared by a group of genes. "List hits" are the numbers of differentially abundant transcripts 
that belong to the gene category. "List total" is the number of differentially expressed genes within the corresponding cellular component, biological 
process, or molecular function system. "Population hits" represent the total number of genes found on the microarray possessing that specific gene 
category annotation (e.g., extracellular, skeletal development, etc.). "Population Total" represents the total number of genes found on the 
microarray possessing that ontological system annotation. "EASE score" is a measure of overrepresentation that scales the results of a statistical 
analysis (Fisher's exact test) by biasing against categories supported by few genes.
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etal development, and carbohydrate and proteoglycan
metabolism. Of note was increased transcript abundance
in repair tissue for proliferative cell markers like fibroblast
activation protein (FAP) and stathmin-1, as well as the
inflammatory mediator cyclooxygenase-2 (COX2)
(Figure 5).

Quantitative PCR validation
Steady-state transcript abundance was measured for
endogenous controls beta-2-microglobulin (B2M) and
large ribosomal protein P0 (RPLP0), as well as target
genes type I procollagen alpha-2 chain (COL1A2), type II
procollagen alpha 1 chain (COL2A1), cartilage oligomeric
matrix protein (COMP), dermatopontin (DPT), fibroblast
activation protein (FAP), and tenascin-C (TNC). Relative
quantification of target transcripts revealed significant

increases in mRNA abundance for COL2A1 and COMP in
normal articular cartilage (Figure 6). Fold change differ-
ences were similar or slightly greater than what was meas-
ured by microarray profiles. Increased COL1A2, DPT, and
FAP transcript abundance for repair tissue was also vali-
dated by RT-qPCR (Figure 6). Transcript abundance for
TNC in repair tissue demonstrated an increasing trend by
RT-qPCR, though significance was not achieved
(Figure 6).

Discussion
Histological analyses and transcriptional studies identi-
fied clear differences between chondrocytes of grossly nor-
mal articular cartilage and the cells present in repair tissue
of full-thickness articular lesions following a microfrac-
ture surgical procedure. At four months post-surgery,

Table 3: Overrepresented ontological categories for transcripts with >2-fold difference in repair tissue versus normal articular 
cartilage.

GO System Gene Category List Hits List Total Population Hits Population Total EASE Score

Biological Process immune response 23 270 98 2575 0.00032

Biological Process defense response 23 270 103 2575 0.00066

Cellular Component cytoskeleton 39 275 216 2556 0.00095

Cellular Component actin cytoskeleton 18 275 73 2556 0.00133

Biological Process response to biotic stimulus 26 270 130 2575 0.00148

Biological Process organelle organization and biogenesis 21 270 96 2575 0.00162

Biological Process cytoskeleton organization and 
biogenesis

16 270 65 2575 0.00216

Cellular Component extracellular matrix 21 275 100 2556 0.00368

Biological Process histogenesis 7 270 16 2575 0.00398

Biological Process cell motility 18 270 84 2575 0.00492

Biological Process response to external stimulus 36 270 220 2575 0.00569

Molecular Function calcium ion binding 25 279 134 2611 0.00627

Biological Process protein complex assembly 10 270 34 2575 0.00646

Biological Process cell adhesion (3) 26 270 145 2575 0.00685

Molecular Function hydrogen ion transporter activity (2) 13 279 53 2611 0.00808

Redundant or similar categories were removed. When present, the number of redundant or similar categories are indicated in parentheses within 
the listed "gene category." "GO System" represents the major gene ontological system (i.e., cellular component, biological process, or molecular 
function). "Gene category" shows a descriptive term shared by a group of genes. "List hits" are the numbers of differentially abundant transcripts 
that belong to the gene category. "List total" is the number of differentially expressed genes within the corresponding cellular component, biological 
process, or molecular function system. "Population hits" represent the total number of genes found on the microarray possessing that specific gene 
category annotation (e.g., extracellular, skeletal development, etc.). "Population Total" represents the total number of genes found on the 
microarray possessing that ontological system annotation. "EASE score" is a measure of overrepresentation that scales the results of a statistical 
analysis (Fisher's exact test) by biasing against categories supported by few genes.
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repair tissue is morphologically discernible from normal
cartilage. Type I collagen transcripts are detected in the
repair tissue, and much of the repair tissue is proteogly-
can-deficient. Moreover, a substantial transcriptional
divergence is readily apparent between the two cell types
even at a genomic level. Analyses of overrepresented gene
categories for differentially expressed transcripts demon-
strate broad functional differences.

Conventional biomarker transcripts used to characterize a
chondrocytic phenotype indicated that the repair tissues
in this sample set were quite different from the adjacent
articular cartilage in the same joint. Increased transcript
levels for types II and IX collagen were found in the artic-
ular cartilage (Figure 4). Quantitative RT-PCR indicated a
16.1-fold expression difference for COL2A1 in articular
cartilage relative to repair tissue (p = 0.0090, Figure 6B).
In contrast, abundance of transcripts associated with type
I collagen-rich fibrous tissues were greater in repair tissue

(Figure 4). Steady-state mRNA levels for COL1A2 were
77.1-fold higher in repair tissue relative to articular carti-
lage (p = 0.0485, Figure 6A). These transcriptional data
directly support published biochemical results which
demonstrated differing collagen type I: type II ratios for
articular repair tissue and perilesional articular cartilage
through detection of cleaved peptides [4,7]. Differences in
the magnitude of fold changes in microarray and RT-
qPCR results can be explained by the differences in
dynamic range of detection between hybridization-based
assays and amplification-based assays [38]. Notable dif-
ferences for proteoglycans between repair tissue and the
surrounding articular cartilage were observed with tran-
script levels and by Safranin-O staining (Figures 1, 4). Pro-
teoglycan differences have also been noted through
Safranin-O staining of articular repair tissue in the distal
femur of the New Zealand White rabbit [2] and in the dis-
tal radial carpal bone of the horse [7], relative to prote-
oglycan content of perilesional articular cartilage in both
studies.

Divergent characteristics between articular cartilage and
repair tissue extend to transcripts of other matrix proteins.
Transcripts encoding cartilage macromolecules believed
to play a role in cell-cell and cell-matrix interactions were
significantly less abundant in repair tissue relative to nor-
mal articular cartilage (Figure 4). Such transcripts
included chondroadherin (CHAD), cartilage intermediate
layer protein (CILP), cartilage oligomeric matrix protein
(COMP), and fibronectin (FN1) [39-44]. COMP interacts
with type II collagen for fibrillogenesis and has been
shown to bind to the chondroitin sulfate glycosaminogly-
cans associated with aggrecan. COMP expression is ini-
tially up-regulated in chondrocytes exposed to increased
dynamic compression [45,46], those from the superficial
zone in fibrillated OA cartilage [47], and chondrocytes
adjacent to an OA lesion [44]; however, transcript levels in
repair tissue at the four month time point were 30.5-fold
lower (p = 0.0010, Figure 6C). Matrix molecules like CILP
which are present in normal cartilage slow down the
responsiveness of chondrocytes to insulin-like growth fac-
tor 1 (IGF-1) as a result of accumulation of calcium pyro-
phosphate dehydrate [43]. Thus, CILP might inhibit the
ability of the surrounding chondrocytes to expand and
occupy the lesion [43]. Transcript abundance for hypoxia
inducible transcription factor 2α (HIF-2α) was up-regu-
lated in normal cartilage (Figure 5) and has been found to
support the cartilage phenotype by (SRY-box 9) SOX9
induction of matrix genes [48]. In contrast, tenascin-C
(TNC), which is typically found in provisional matrices
throughout development and wound healing [49-52],
demonstrated greater transcript levels in repair tissue by
microarray analyses (Figure 4). While statistical signifi-
cance was not confirmed by RT-qPCR (p = 0.0665, Figure
6F), upregulation of TNC has been noted in early stages of

Microarray transcriptional profiles of articular cartilage and repair tissue molecules/biomarkersFigure 4
Microarray transcriptional profiles of articular carti-
lage and repair tissue molecules/biomarkers. Bars rep-
resent median fold changes of differentially expressed genes 
(p < 0.01) previously associated with cartilage and fibrocarti-
lage. Gene symbols are organized by functional annotation 
and are listed with the number of representative probe sets 
in parentheses.
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osteoarthritis and also during the repair process of many
other tissues through in situ hybridization, immunohisto-
chemistry, and knockout mouse studies [49,53-55]. Based
on its function in the expansion of provisional matrices, it
is likely that analyses of earlier time points would have
detected greater divergence of TNC mRNA levels.

Within the repair tissue, differential expression was noted
for transcripts encoding proteins involved in wound heal-
ing and matrix synthesis. Shapiro et al. have shown that
stromal cells of mesenchymal origin from the subchon-
dral bone enter into the wound with the blood which fills
the full-thickness lesion [2]. With angiogenic cues such as
vascular endothelial growth factor (Figure 5) and vascu-
larization from the subchondral bone, these cells prolifer-
ate within the granulation tissue to occupy the lesion
[2,56,57]. Increased transcript abundance of fibroblast
activation protein (FAP) is consistent with the prolifera-
tive cellular response reported by Shapiro et al. (Figure 5)

[2]. RT-qPCR indicated a 2.6-fold relative expression dif-
ference for FAP in repair tissue four months post-microf-
racture relative to articular cartilage (p = 0.0415, Figure
6E). Assessment of FAP expression at additional time
points during the repair process would further delineate
its importance. Steady-state levels of dermatopontin
(DPT) were also elevated in repair tissue (Figures 5, 6D).
Fibrillogenesis of type I collagen is accelerated by DPT,
which has previously been localized in skin fibroblasts,
skeletal muscle, heart, lung, bone, and chondrocytes that
de-differentiate while expanding in monolayer culture
[58-60]. DPT interacts synergistically with decorin and
transforming growth factor-β1 to bolster collagen synthe-
sis and accelerate fibrillogenesis to the point of decreasing
fibril diameters in proliferating skin fibroblast cultures
[59]. A wound healing process is further indicated by the
7.5-fold up-regulation of cyclooxygenase 2 (COX2, Figure
5), an inflammatory modulator shown to be essential in
the repair of bone fractures and growth plate lesions [61].

Microarray transcriptional profiles for representative genes of interestFigure 5
Microarray transcriptional profiles for representative genes of interest. Median fold changes are shown for differen-
tially expressed genes (p < 0.01) which further distinguish normal articular cartilage and repair tissue. Individual genes are 
organized by molecular function. Gene symbols are given with the number of representative probe sets in parentheses.
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RT-qPCR validation of differential gene expressionFigure 6
RT-qPCR validation of differential gene expression. Significant up-regulation of COL2A1 (B) and COMP (C) gene 
expression in normal articular cartilage relative to repair tissue was confirmed. Higher steady-state levels of COL1A2 (A), DPT 
(D), and FAP (E) transcripts in repair tissue were also confirmed. Gene expression of TNC (F) demonstrates a trend of 
increased steady state abundance in repair tissue relative to normal articular cartilage, though statistical significance was not 
achieved. Steady state mRNA levels for each gene were standardized to the sample with the lowest value. Plots are depicted as 
box and whisker plots demonstrating the median (solid line), upper and lower quartiles, and highest and lowest values (range 
bars). Mean fold differences are given above the box and whisker plots for each gene; one-tailed general linear model (α = 
0.05) statistical analysis applied with SPSS software.
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Transcript profiles for COX2 and S100 protein are com-
patible with chondrogenic differentiation of stromal cells
[61,62], but the consistent deficiency of cartilage matrix
protein biomarkers highlighted by the switch of type I col-
lagen (COL1A1, COL1A2) in place of type II collagen
(COL2A1) as the primary fibrillar collagen document the
failure of true hyaline cartilage restoration.

A limitation of this study must be noted. Tissues utilized
in these experiments included repair tissue and grossly
normal articular cartilage from within the same joint.
Thus, any gene expression differences between grossly
normal cartilage within the lesioned joint and cartilage
from an intact articular surface from another joint were
not assessed. Differences have been reported with intact
cartilage from human OA joints [63]. However, equine
joints used for the current sample set had minimal OA
and the defects were freshly created in the medial femoral
condyles four months prior to tissue sample collection.

Conclusion
Transcriptional profiling data support the hypothesis and
indicate that repair tissue cells following a microfracture
surgical procedure are still very different from normal
articular chondrocytes at the four month postoperative
time point. The cell and matrix organizational phenotypes
of repair tissue are substantially different from those of
chondrocytes within mature articular cartilage that has
developed and adapted to biomechanical strains from
birth. Microarray data in the current study corroborate
what has been reported previously at mRNA and protein
levels for conventional cartilage biomarkers, but extends
our understanding by documenting differences in tran-
script abundance across multiple ontology categories and
genes not previously studied in these tissues. By directing
further research toward factors which contribute to the
transcriptome dissimilarities of repair tissue and normal
articular cartilage phenotypes, we should advance our
understanding of the repair process and improve upon
therapeutic strategies directed at restoring the structural
and biomechanical integrity of the joint surface.
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