1,443 research outputs found

    Symmetric Informationally Complete Quantum Measurements

    Get PDF
    We consider the existence in arbitrary finite dimensions d of a POVM comprised of d^2 rank-one operators all of whose operator inner products are equal. Such a set is called a ``symmetric, informationally complete'' POVM (SIC-POVM) and is equivalent to a set of d^2 equiangular lines in C^d. SIC-POVMs are relevant for quantum state tomography, quantum cryptography, and foundational issues in quantum mechanics. We construct SIC-POVMs in dimensions two, three, and four. We further conjecture that a particular kind of group-covariant SIC-POVM exists in arbitrary dimensions, providing numerical results up to dimension 45 to bolster this claim.Comment: 8 page

    The road to deterministic matrices with the restricted isometry property

    Get PDF
    The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some novel, and we evaluate their performance. In evaluating some techniques, we apply random matrix theory and inadvertently find a simple alternative proof that certain random matrices are RIP. Later, we propose a particular class of matrices as candidates for being RIP, namely, equiangular tight frames (ETFs). Using the known correspondence between real ETFs and strongly regular graphs, we investigate certain combinatorial implications of a real ETF being RIP. Specifically, we give probabilistic intuition for a new bound on the clique number of Paley graphs of prime order, and we conjecture that the corresponding ETFs are RIP in a manner similar to random matrices.Comment: 24 page

    Restricted Isometries for Partial Random Circulant Matrices

    Get PDF
    In the theory of compressed sensing, restricted isometry analysis has become a standard tool for studying how efficiently a measurement matrix acquires information about sparse and compressible signals. Many recovery algorithms are known to succeed when the restricted isometry constants of the sampling matrix are small. Many potential applications of compressed sensing involve a data-acquisition process that proceeds by convolution with a random pulse followed by (nonrandom) subsampling. At present, the theoretical analysis of this measurement technique is lacking. This paper demonstrates that the ssth order restricted isometry constant is small when the number mm of samples satisfies m(slogn)3/2m \gtrsim (s \log n)^{3/2}, where nn is the length of the pulse. This bound improves on previous estimates, which exhibit quadratic scaling

    Prime tight frames

    Get PDF
    We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use this characterization to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle θ\theta^* for each event. By comparing the cosθ\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Measurement of the B0_s semileptonic branching ratio to an orbitally excited D_s** state, Br(B0_s -> Ds1(2536) mu nu)

    Get PDF
    In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.Comment: 7 pages, 2 figures, LaTeX, version with minor changes as accepted by Phys. Rev. Let

    Measurement of the Lifetime Difference in the B_s^0 System

    Get PDF
    We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/- 0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0) =1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width difference between the heavy and light mass eigenstates, Delta Gamma/Gamma = (Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst). With the additional constraint from the world average of the B_s^0$lifetime measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003 (syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-

    A search for W bb and W Higgs production in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for W b \bar{b} production in p \bar{p} collisions at sqrt{s}=1.96 TeV in events containing one electron, an imbalance in transverse momentum, and two b-tagged jets. Using 174 pb-1 of integrated luminosity accumulated by the D0 experiment at the Fermilab Tevatron collider, and the standard-model description of such events, we set a 95% C.L. upper limit on W b \bar{b}productionof6.6pbforbquarkswithtransversemomentapTb>20GeVandbbˉseparationinpseudorapidityazimuthspaceDeltaRbb>0.75.Restrictingthesearchtooptimizedbbˉmassintervalsprovidesupperlimitson production of 6.6 pb for b quarks with transverse momenta p_T^b > 20 GeV and b \bar{b} separation in pseudorapidity-azimuth space Delta R_bb > 0.75. Restricting the search to optimized b \bar{b} mass intervals provides upper limits on WHproductionof9.0 production of 9.0-12.2pb,forHiggsbosonmassesof10512.2 pb, for Higgs-boson masses of 105-$135 GeV.Comment: 7 pages, 4 figures, 1 table, submitted to Physical Review Letter

    Study of ZγZ\gamma events and limits on anomalous ZZγZZ\gamma and ZγγZ\gamma\gamma couplings in ppbar collisions at sqrt(s)=1.96sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the Z\gamma production cross section and limits on anomalous ZZ\gamma and Z\gamma\gamma couplings for form-factor scales of Lambda = 750 and 1000 GeV. The measurement is based on 138 (152) candidate events in the ee\gamma (\mu\mu\gamma) final state using 320 (290) pb^{-1} of ppbar collisions at \sqrt{s} = 1.96 TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h_{10,30}^{Z}|<0.23, |h_{20,40}^{Z}|<0.020, |h_{10,30}^{\gamma}|<0.23, and |h_{20,40}^{\gamma}|<0.019 for Lambda = 1000 GeV.Comment: submitted to Phys. Rev. Letter
    corecore