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Prime tight frames

Jakob Lemvig∗ , Christopher Miller†, and Kasso A. Okoudjou‡

July 31, 2012

Abstract: We introduce a class of finite tight frames called prime tight frames
and prove some of their elementary properties. In particular, we show that any
finite tight frame can be written as a union of prime tight frames. We then char-
acterize all prime harmonic tight frames and use this characterization to suggest
effective analysis and synthesis computation strategies for such frames. Finally,
we describe all prime frames constructed from the spectral tetris method, and, as
a byproduct, we obtain a characterization of when the spectral tetris construction
works for redundancies below two.

1 Introduction
A frame for a finite dimensional vector space is a spanning set that is not necessarily a basis.
More specifically, let K denote either R or C, and consider KN , N ≥ 1, as a vector space over
the scalar field K. Given M ≥ N, a collection of vectors Φ = {ϕi}Mi=1 ⊂ KN is called a finite
frame for KN if there are two constants 0 < A≤ B such that

A‖x‖2 ≤
M

∑
i=1

| 〈x,ϕi〉|2 ≤ B‖x‖2, for all x ∈KN . (1.1)

If the frame bounds A and B are equal, the frame Φ = {ϕi}Mi=1 is called a finite tight frame.
We refer to Φ = {ϕi}Mi=1 as a finite unit norm tight frame (FUNTF), if Φ is a tight frame with
‖ϕi‖ = 1 for each i. In this case, the frame bound is A =M/N. For a tight frame Φ = {ϕi}Mi=1
with frame bound A, the following reproducing formula holds

x=
1
A

M

∑
i=1

〈x,ϕi〉ϕi, for all x ∈KN . (1.2)
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The decomposition formula provided by frames has important consequences in many areas
of science and engineering in which they now play an increasingly important role. We refer
to [9, 11, 12] for an overview of frames and some of their applications. In particular, tight
frames and FUNTFs have attracted a lot of attention in recent years due to their numerous
applications. In this context methods for characterizing and constructing these types of frames
are being actively investigated. For instance, the existence and characterization of FUNTFs was
settled by Benedetto and Fickus in [2] as minimizers of a potential function.

In this paper we are interested in the classification of the tight frames that remain tight after
the deletion of frame vectors. For (non-tight) frames, this problem is known as the erasure
problem for frames and was first investigated by Goyal, Kovačević, and Kelner [10], and later
by Casazza and Kovačević [7]. The focus in these works was whether any set of vectors of a
given size can be removed from a frame to still leave a frame. In this case, estimates for frame
bounds after erasures were given.

By contrast, we investigate tight frames which remain such after the erasures of some set of
frame vectors. In the process, we define a new class of tight frames called prime tight frames
as tight frames for which no proper sub-collection is a tight frame. In Section 2, we analyze the
structure of prime tight frames. In particular, we show that prime tight frames are fundamental
building blocks for all tight frames in the sense that any tight frame can be written as a union
of prime tight frames. This is, in a way, analog to the prime factorization of natural numbers;
however, this factorization of tight frames into prime ones is not unique. In Section 3, we then
restrict our attention to FUNTFs and characterize the prime tight frames for three families of
FUNTFs: equiangular tight frames, harmonic tight frames, and spectral tetris frames. Equian-
gular and harmonic tight frames have proven to be some of the most useful frames in a variety
of applications. For harmonic tight frames (HTF), i.e., tight frames constructed from anM×M
discrete Fourier matrix by keeping the first N rows, this characterization leads to effective anal-
ysis and synthesis computation strategies for HTFs. The spectral tetris method was recently
introduced by Casazza, Fickus, Mixon, Wang, and Zhou [5] and has already received consider-
able attention in the frame theory community. As a byproduct of our results on prime spectral
tetris frames, we are able to characterize all dimensions N and number of frame vectors M for
which the spectral tetris construction works. This was previously only known for redundancies
larger than two.

2 Basic facts of prime and divisible tight frames
We define prime and divisible tight frames and prove some of their properties in Section 2.1.
In Section 2.2, we then prove that prime frames exist in every dimension which allows us to
conclude that prime tight frames form an open, dense subset of the set of all tight frames.

2.1 Definitions and elementary properties
Definition 2.1. Let M ≥ N be given. A tight frame Φ = {ϕi}Mi=1 in KN is said to be prime, if
no proper subset of Φ is a tight frame for KN . If Φ is not prime, we say that it is divisible. In
particular, given an integer p with N ≤ p≤M−N, the tight frame Φ is (M, p)-divisible if there
exists a subset of Φ containing p vectors that is also a tight frame.

Remark 1. For a tight frame Φ = {ϕi}Mi=1 in KN to be prime it is sufficient that M < 2N. In
other words, for Φ to be divisible it is necessary that M ≥ 2N. This follows from the fact that,
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ifM < 2N, it is impossible to partition Φ into two spanning sets.
We also note that there exist frames Φ that are (M, p)-divisible for all p in the full range

N ≤ p ≤M−N, e.g., choosing Φ to be the harmonic tight frame in C2 with 24 frame vectors.
On the other hand, it is not possible for a tight frame to be robust with respect to tightness for
any p erasures, where p ∈N is fixed. Hence within the class of tight frames the erasure problem
has no solution. This negative result and a simple symmetry observation are stated in the next
proposition.

Proposition 2.2. Let M ≥ N ≥ 2 be given. Let Φ = {ϕi}Mi=1 be a tight frame in K
N.

(i) Φ is (M, p)-divisible if and only if Φ is (M,N− p)-divisible.
(ii) Given N ≤ p ≤ M−N, there exists no (M, p)-divisible tight frame Φ in KN for which

every sub-collection of Φ consisting of p vectors is a tight frame.

Proof. (i): The proof of this part is trivial and so we omit it.
(ii): First assume that Φ = {ϕk}Mk=1 is a FUNTF that is (M, p)-divisible and such that every
sub-collection of p vectors is again a FUNTF. Let Φ1 = {ϕi}i∈J, where J = {1, . . . , p}, be the
tight frame of the first p vectors from Φ. We replace the �th frame vector in Φ1 by the kth vector
in Φ, where p+1 ≤ k ≤M, and denote this tight frame Φ2 := {ϕi}i∈J\{�} ∪{ϕk}. Then, given
any x ∈KN , we have

p
N‖x‖

2 = ∑
i∈J

|〈x,ϕi〉|2 = ∑
i∈J\{�}

|〈x,ϕi〉|2 + |〈x,ϕk〉|2 .

This implies that |〈x,ϕ�〉|= |〈x,ϕk〉|. Since � and k are arbitrary, we have that |〈x,ϕ�〉|= |〈x,ϕk〉|
for each x ∈ KN , each � = 1,2, . . . , p, and each p+ 1 ≤ k ≤ M. In particular, we have that
|〈ϕk,ϕ�〉| = 1 for 1 ≤ � ≤ p and p+1 ≤ k ≤M. Since the vectors ϕi are unit-norm, for a fixed
k = k0 ∈ {p+1, . . . ,M}, this implies that ϕ� ∈ span(ϕk0) for all 1 ≤ �≤ p. Hence, the span of
Φ1 is one-dimensional which contradicts the assumption that Φ1 is a tight frame. We conclude
that there exist no FUNTF that is (M, p)-divisible and for which all sub-collections of p vectors
are also FUNTF. This proof carries over also to the case of equal norm tight frames.

Now suppose that Φ = {ϕi}Mi=1 is an (M, p)-divisible non-equal norm, tight frame such
that any subset of p vectors is again a tight frame. Assume without loss of generality that
‖ϕ1‖ ≥ ‖ϕ2‖ ≥ . . .≥ ‖ϕM‖. Let Φ1 = {ϕi}pi=1 be the subset of the first p vectors from Φ, and
let Φ2 = {ϕi}p−1

i=1 ∪{ϕk} where p+1 ≤ k ≤M, p being the first index such that ‖ϕp‖> ‖ϕk‖.
Then, given any x ∈KN , we have

∑pi=1 ‖ϕi‖2

N ‖x‖2 =
p

∑
i=1

|〈x,ϕi〉|2 and ∑p−1
i=1 ‖ϕi‖2+‖ϕk‖2

N ‖x‖2 =
p−1

∑
i=1

|〈x,ϕi〉|2 + |〈x,ϕk〉|2 .

This implies that |〈x,ϕp〉|2−|〈x,ϕk〉|2 =
‖ϕp‖2−‖ϕk‖2

N ‖x‖2 for each x∈KN . If we choose x= ϕp,
we find that ∥∥ϕp

∥∥4
−|〈ϕp,ϕk〉|2 =

‖ϕp‖2−‖ϕk‖2

N ‖ϕp‖2,

and similarly, for x= ϕk, we have

|〈ϕp,ϕk〉|2−‖ϕk‖4 =
‖ϕp‖2−‖ϕk‖2

N ‖ϕk‖2.
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Combining these two equations we obtain

‖ϕp‖4 −‖ϕk‖4 =
‖ϕp‖4−‖ϕk‖4

N ,

which leads to N = 1. This contradiction concludes the proof.

The following result shows that if we can take out a subset of vectors from a tight frame
such that these vectors form a tight frame, then what is left is automatically also a tight frame.

Theorem 2.3. Let M ≥ 2N. Suppose Φ = {ϕk}Mk=1 is a divisible tight frame for K
N, and let

Φ1 � Φ denote a tight frame for KN. Then Φ2 = Φ\Φ1 is also a tight frame for KN.
Moreover, given M ≥ N, every tight frame of M vectors inKN is a finite union of prime tight

frames.

Proof. Assume that Φ and Φ1 � Φ are tight frames with frame bounds A and A1, respectively,
and let Φ2 = Φ \Φ1. We will now consider Φ as an N×M matrix of the form Φ = [ϕi]Mi=1 ∈
Mat(N×M,K). Hence, after a possible reordering of columns, we have that Φ = [Φ1 Φ2], and

AIN = ΦΦ∗ = [Φ1 Φ2]

[
Φ∗

1
Φ∗

2

]
= Φ1Φ∗

1 +Φ2Φ∗
2 = A1IN+Φ2Φ∗

2, (2.1)

which implies that Φ2Φ∗
2 = (A−A1) IN . Consequently, Φ2 is tight frame with frame bound

A−A1 > 0.
For the second part, observe that if Φ is prime, there is nothing to prove. So suppose that

Φ is divisible tight frame with frame bound A. Then, by definition, we can partition Φ into
Φ = Φ1 ∪ (Φ \Φ1), where Φ1 � Φ is a tight frame. It follows from the proof of the first part
of the lemma that Φ2 := Φ \Φ1 is also a tight frame. If Φ1 and Φ2 are prime, we are done. If
not, repeat the process. In each step of this procedure we split a tight frame into two sets of
cardinality at least N each. Hence, by Remark 1, the procedure terminates after at most

⌊M
N
⌋

steps.

The second part of Theorem 2.3 suggests the following definition.

Definition 2.4. Let Φ be a tight frame. Suppose, for some K ∈ N,

Φ = Φ1 ∪· · ·∪ΦK , (2.2)

where Φk, k = 1, . . . ,K, are prime tight frames. We shall say that Φk are prime factors or prime
divisors of Φ.

The prime factors of a frame are, in general, not unique as shown by the following examples.

Example 1. (a) The 6th roots of unity FUNTF in R2, that is, the frame of six unit-norm vectors
each 2π/6 apart as the vertices of a hexagon, factors into two FUNTFs, each of which
consists of three vectors. But these are not unique since you can choose the two set of three
frame vectors in eight different ways. However, up to multiplication of individual frame
vectors by −1 this decomposition is in fact unique.

(b) The uniqueness of the factors up to scalar multiplication in part (a) of the example does not
hold in general. The harmonic frame of 10 vectors in C2 decomposes into either five frames
of size two or two frames of size five. We refer to Section 3.2 for more details on this.
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Tight frames Φ and Ψ are unitarily equivalent if there is a bijection p : {1, . . . ,M} →
{1, . . . ,M}, a unitary N×N matrixU and a ci ∈K with |ci|= c> 0 such that ψi = ciUϕp(i) for
all i = 1, . . . ,M. In matrix notation this reads Ψ =UΦPC, where P is the M×M permutation
matrix for p and C = diag(c1, . . . ,cM). Note that there exist other related equivalence notions,
e.g., in [8] ci is replaced by a fixed positive scalar c > 0. We remark that it is only necessary
to introduce permutations in the equivalence relations if one considers frames as sequences of
vectors as opposed to non-ordered collections of vectors with repetition allowed. The following
result shows that prime frame are equivalence classes.

Proposition 2.5. Suppose Φ and Ψ are unitarily equivalent tight frames for KN. Then Φ is
prime if and only if Ψ is prime.

Proof. We prove that Φ is divisible if and only if Ψ is divisible. Assume ΦJ := [ϕi]i∈J is a
divisor of Φ for some J ⊂ {1, . . . ,M}. Then ΦJΦ∗

J = AIN for some A > 0. Since ψp−1(i) =
cp−1(i)Uϕi by assumption, we have that

Ψp−1(J)(Ψp−1(J))
∗ =UΦJCJ (UΦJCJ)∗ = c2AIN,

where CJ = diag(cp−1(i))i∈J. This shows that Ψ is divisible with divisor Ψp−1(J). By the sym-
metry of the equivalence relation, this completes the proof.

Proposition 2.5 also holds for the notion of unitarily equivalence used in [8]. However, the
result is false if one uses the coarser notion of equivalence, where the matrixU is only assumed
to be invertible.

We end this subsection by mentioning that the notion of prime tight frames easily generalizes
to non-tight frames. Recall that if Φ is a frame with frame operator S=ΦΦ∗, then the associated
canonical Parseval frame is given by S−1/2Φ. Hence, a frame Φ is said to be prime if its
canonical Parseval frame is a prime tight frame.

2.2 Existence and denseness of prime tight frames
We now turn the question of existence of prime tight frames. If Φ is a union of an orthonormal
basis for KN andM−N zero vectors, then Φ is prime for any N,M ∈N. This trivial observation
shows the existence of prime tight frames for allM ≥ N ∈ N. The following result extends this
fact to tight frames of non-zero vectors.

Proposition 2.6. For each dimension N ∈ N there exists a prime tight frame for KN with M
non-zero vectors for any M ≥ N ∈ N.

Proof. The case N = 1 is trivial, hence we assume N ≥ 2. Let Ψ ∈K(N−1)×(M−1) be a Parseval
frame for KN−1. We now extend Ψ into an N×M matrix by first adding a 1× (M− 1) row
vector with zeros as a new Nth row, and then by adding eN ∈ KN as a new Mth column. The
picture is:

Φ =

⎡⎢⎢⎢⎢⎣
. . .

... . .
.

0
· · · Ψ · · · 0

. .
. ...

. . . 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ .

The new frame Φ is a Parseval frame for KN since ΦΦ∗ = IN . Moreover, it is prime since any
tight frame Φ1 ⊂ Φ must contain theMth column in order to span KN .
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Remark 2. For certain values of N,M, we can extend Proposition 2.6 to show existence of prime
unit-norm tight frames. The case N ≤ M < 2N follows from Remark 1. If M ≥ 2N and M is
prime, then we take the M×M DFT matrix and choose any N rows to be our frame Φ. Since
no proper subset of the (primitive)Mth root of unity sum to zero, there exists no way to divide
Φ into two FUNTFs. Hence, Φ is a prime FUNTF.

It is easy to build divisible tight frames since the union of any two tight frames is divisible.
However, the existence of prime tight frames allows us to prove that “most” tight frame are in
fact prime. To state this result, we need to set some notations. For A> 0 fixed, let F (N,M,A)
be the set of all tight frames with frame bound A, that is,

F (N,M,A) = {Φ ∈ Mat(N×M,K) : ΦΦ∗ = AIN} .

Let
P(N,M,A) = {Φ ∈ F (N,M,A) : Φ is prime} .

When A = 1, we simply denote these sets F (N,M) and P(N,M). Note that F (N,M) is the
Stiefel manifold, see [16], which is invariant under multiplication by N×N unitary matrices
from the left and by M×M unitaries from the right. Consequently, there exists an invariant
Haar probability measure μ on F (N,M). The results stated below hold for any measure that is
absolutely continuous with respect to μ .

Following the setup in [1, Section 3], each of the entries in a matrix Φ ∈ F (N,M) is writ-
ten in terms of its real and imaginary parts: ϕk,� = xk,� + iyk,� for all k, �. In this setting we
can consider F (N,M) as an real algebraic variety in R2MN . Since F (N,M) is an irreducible
variety, every non-empty Zariski-open subset of F (N,M) is open and dense in F (N,M) in
the (induced) standard topology [1]. Moreover, the complement of a non-empty Zariski-open
subset is of μ-measure zero. The following result says that being prime within the set of tight
frames is a very generic property.

Theorem 2.7. Let N,M ∈N and A> 0. The set of prime A-tight framesP(N,M,A) is open and
dense in the set of all A-tight framesF (N,M,A) in the (induced) standard topology. Moreover,
the complementF (N,M,A)\P(N,M,A) is of measure zero in μ .

Proof. We can without loss of generality take A= 1. Let Φ ∈ F (N,M) and let S be the power
set of {1, . . . ,M}. We use the notation ΦI = [ϕi]i∈I for I ∈ S. Now, Φ is divisible if and only if

ΦIΦ ∗
I = cIN

for some /0 �= I ∈ S and c> 0. These orthogonality conditions can be expressed as polynomial
equations in xk,� and yk,� introduced above. Since S is finite, the set of prime 1-tight frames
P(N,M) is a finite intersection of the complement of such sets in F (N,M). The sub-variety
P(N,M) is therefore Zariski-open in the irreducible variety F (N,M). By Proposition 2.6 the
set P(N,M) is non-empty. Since P(N,M) is a non-empty Zariski-open set in an irreducible
variety, the result follows.

Remark 3. Let V be an N ×M matrix with entries independently drawn at random from an
absolutely continuous distribution with respect to the Lebesgue measure; a standard choice
could be the Gaussian distribution of zero mean and unit variance. With probability one, V is a
frame and thus performing the Gram-Schmidt algorithm on the rows ofV leads to a tight frame.
We call such frames for random, tight frames. It can be shown from Theorem 2.7 that random
tight frames are prime with probability one.
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By Theorem 2.7 we see that if Φ is a (divisible or prime) tight frame and Φ̃ a random,
arbitrarily small perturbation of Φ such that Φ̃ again is tight, then Φ̃ is prime with probability
one. From Theorem 2.7 we also have the following density result.

Corollary 2.8. Every tight frame is arbitrarily close to a prime tight frame.

3 Classification of certain prime tight frames
In this section we characterize prime frames within three well-known families of FUNTFs:
equiangular tight frames, harmonic frames, and spectral tetris frames.

3.1 Equiangular FUNTFs
A FUNTF Φ= {ϕi}Mi=1 is said to be equiangular if |

〈
ϕi,ϕ j

〉
|= c for all i, j= 1, . . . ,M with i �= j

for some constant c≥ 0, [17]. Equivalently, equiangular tight frames are sequences that achieve
the Welch bounds with equality [18]. We show that, when they exist, equiangular tight frames
are automatically prime tight frames. This necessary condition was derived by Xia, Zhou, and
Giannikis [19] for the special case of harmonic tight frames using the notion of difference sets.

Theorem 3.1 ([17, Theorem 2.3]). Suppose Φ = {ϕi}Mi=1 be a unit norm frame in K
N. Then

max
i �= j

∣∣〈ϕi,ϕ j
〉∣∣≥√

M−N
N(M−1)

,

and equality holds if and only if Φ is an equiangular tight frame.

The existence of equiangular tight frames is still an open problem. However, as shown
below, when they exist, equiangular tight frames are also prime.

Theorem 3.2. Let N ≥ 2. Equiangular FUNTFs of M vectors inKN, when they exist, are prime.

Proof. Assume that Φ = {ϕi}Mi=1 ⊂ KN is an equiangular tight frame. Assume towards a con-
tradiction that Φ is (M, p)-divisible for some N ≤ p≤M−N. Then write Φ = Φ1 ∪Φ2 where
Φ1 and Φ2 are divisors of Φ of size p and M− p, respectively. Consequently, we see that Φ,
Φ1, and Φ2 are all equiangular tight frames. According to Theorem 3.1,∣∣〈ϕi,ϕ j

〉∣∣=√
M−N
N(M−1) =

√
p−N
N(p−1) =

√
M−p−N
N(M−p−1)

with N ≤ p≤M−N. But a series of easy calculations leads to a contradiction. Thus, Φ cannot
be (M, p)-divisible for any N ≤ p≤M−N.

Note that Grassmanian tight frames, see [3], are not in general prime tight frames, e.g., any
Grassmanian frame of four frame vectors in R2 is (4,2)-divisible.
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3.2 Harmonic frames
We now characterize all harmonic FUNTFs that are prime, and for those that are divisible we
describe their factors. For this, we recall that given M ≥ N, a harmonic tight frame (HTF) is
obtained by keeping and renormalizing the N first coordinates from an M×M discrete Fourier
transform, that is, Φ = {ϕk}M−1

k=0 is a HTF, where the (k+1)th column of Φ is given by

ϕk =
√
s
N

⎛⎜⎜⎜⎜⎜⎜⎝
1

γkM
γ2k
M
...

γ(N−1)k
M

⎞⎟⎟⎟⎟⎟⎟⎠=

√
s
N

⎛⎜⎜⎜⎜⎜⎝
ωk1
ωk2
ωk3
...

ωkN

⎞⎟⎟⎟⎟⎟⎠ ∈ CN ,

where s > 0, γM := exp(2πi/M) is the Mth root of unity and ωn := γn−1
M = e2πi(n−1)/M for

n= 1, . . . ,N. When there is no risk of confusion we shall simply write γ for γM = exp(2π i/M).
We denote the obtained HTF by HTF(N,M,s), and we see that this tight frame has frame bound
A = sM/N and frame vector norms ‖ϕk‖ = s. Hence, for s = 1 we have a unit-norm, M/N-
tight frame, while we for s = N/M have a Parseval frame. When nothing else is mentioned we
assume s= 1 for simplicity.

Let us fix some notations and assumptions for this section. We will always assume N ≥ 2
since, if N = 1, any HTF is (M, p)-divisible for all p. Throughout this section we will denote
the index set {1,2, . . . ,M} by I, and we will let J1 denote a subset of I and put J2 := I \ J1. If d
is a divisor ofM, we define index sets I(d,q)⊂ I = {1,2, . . .M} as follows

I(d,q) =
{
k
M
d
+q : k = 0,1, . . . ,d−1

}
, q= 1, . . . ,M/d. (3.1)

These index sets are a disjoint partition of I = {1,2, . . . ,M} for a fixed divisor d. For any n =
1,2, . . . ,N−1, the set {(γn)m : m ∈ I(d,1)} is a subgroup of {(γn)m :m ∈ I} in the circle group,
and {(γn)m :m ∈ I(d,q)} is a coset. Furthermore, we assume the following prime factorization
M = pα1

1 p
α2
2 · · · pαr

r with αi ∈ N and pi prime and ordered such that pi > pi+1.
Let Φ = {ϕk}Mk=1 ⊂ CN be a HTF with index set I = {1,2, . . . ,M}. Since Φ = {ϕk}k∈I is a

tight frame, the rows of Φ are equal-norm and orthogonal. In particular, we have

0 =
〈
ϕn,ϕn

′〉
=

M

∑
m=1

(γ(n−1)−(n′−1))m−1 = ∑
m∈I

(γn−n
′
)m−1 for n �= n′ ∈ {1,2, . . . ,N}, (3.2)

where ϕ j denotes the jth row of Φ. Now, Φ is divisible exactly when it is possible to split the
sum over m ∈ I into two sums, each summing to zero, for each n �= n′. Here we have used that
the norms of the N rows of any sub-collection of Φ are automatically equal since the entries
of Φ are equal in modulus. Therefore it is only necessary to consider the row-orthogonality
requirement of potential divisors. We will use the following result repeatedly.

Lemma 3.3. Let N,M ≥ 2 be given, and let Φ = {ϕk}Mk=1 ⊂ CN be a HTF. Then Φ is (M, p)-
divisible if and only if there exists J1 ⊂ I = {1, . . . ,M} with #J1 = p such that

0 = ∑
m∈J1

(γn−1)m−1 for n ∈ {2, . . . ,N}. (3.3)
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Proof. Let Φ1 := ΦJ1 = {ϕk}k∈J1 , and let ϕ j
1 be the jth row of Φ1. Note that the equations

in (3.3) are equivalent to the statement that 〈ϕ1
1 ,ϕ

n
1 〉 = 0 for n= 2, . . . ,N. Assume (3.3) holds.

Then, since γ−k = γM−k, we see that

0 = ∑
m∈J1

(γn−n
′
)m−1

holds for all n,n′ ∈ {2, . . . ,N} with n �= n′. The last statement is equivalent to 〈ϕn1 ,ϕ
n′
1 〉= 0 for

all n �= n′ ∈ {2, . . . ,N} which in matrix notation becomes Φ1Φ∗
1 = cIn. Therefore, equation (3.3)

implies that Φ1 is a tight frame. The converse implication follows easily from the above.

Suppose Φ is (M, p)-divisible. By taking n = 2 in (3.3) we see that the sub-sum over J1
must be the sum of p Mth roots of unity, and, of course, the second sum over J2 must be the
sum of (M− p)Mth roots of unity. This is an example of vanishing sums of roots of unity [14].
When one of the vanishing sub-sums contains p distinct Mth roots of unity, one says that M is
p-balancing [15]. In particular, we shall use the following result proved in [15].

Theorem 3.4 ( [15, Theorem 2]). Let M = pα1
1 p

α2
2 · · · pαr

r with each pi prime and each αi > 0.
Then M is k-balancing if and only if both k and M−k are in N0p1 +N0p2 + . . .+N0pr, that is,
both k and M− k are linear combination of pi with nonnegative integer coefficients.

By Lemma 3.3, we immediately have that, for N = 2, a HTF is (M, p)-divisible if and only
ifM is p-balancing. More precisely, we have:

Corollary 3.5. Let M ≥ 2 be given. Suppose Φ = {ϕk}Mk=1 ⊂ C2 is a HTF. Then Φ is prime if
and only if M is a prime integer. Furthermore, if M is not prime, then Φ is (M,d)-divisible for
each 2 ≤ d ≤M−2 for which both d and M−d are in N0p1+N0p2+ . . .+N0pr, in particular,
Φ is (M,d)-divisible for every divisor d of M.

Proof. We will use the fact that the frame HTF(2,M,s) is prime if and only if M is not d-
balancing for any 2 ≤ d ≤M−2.

Assume first that Φ is prime, that is, that M is not d-balancing for any 2 ≤ d ≤ M− 2.
Towards a contradiction assume further that M is not prime so that M = pα1

1 p
α2
2 · · · pαr

r with
r > 1. Then M = p1b with b= pα1−1

1 pα2
2 · · · pαr

r ≥ 2. For d = p1 we have

M−d = p1b− p1 = p1(b−1),

but this contradicts the fact thatM is not d-balancing for any 2 ≤ d ≤M−2.
For the opposite implication, we observe that the prime factorization of M = p1 is trivial

whenM itself is prime. Since there is no divisor 0 < d <M so that d,M−d ∈MN0, we see that
M is not d-balancing for any N ≤ d ≤M−N. Thus, we have proved the bi-implication part of
the theorem.

The “furthermore” statement follows immediately from the above and Theorem 3.4.

In general, when N > 2, the characterization of prime HTFs is more involved. Indeed,
we now have multiple rows consisting of Mth roots of unity, and we must insure, for (M,d)-
divisibility, not only that each of these row is d-balancing, but also that the subset of d roots
that sum to zero in each of these rows, comes from the same columns.
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In order to formally state this we need to define a few sets of integers. Using the notation
fixed above, we define

DM,N =
{
d ∈ {N, . . . ,M−N} : d is a divisor ofM

}
, (3.4)

PM,N = DM,N \{d ∈ DM,N : ∃c ∈ DM,N such that c is a divisor of d} , (3.5)

and

SM,N =
{
s ∈ {N, . . . ,M−N} : s=

K

∑
k=1
akqk,M− s=

K

∑
k=1
bkqk, where ak,bk ∈ N0,qk ∈ PM,N

}
,

where K = #PM,N . Note that s ∈ SM,N if and only ifM− s ∈ SM,N . It is also clear that

PM,N ⊂ DM,N ⊂ SM,N,

and that DM,N is empty for any N ∈ N if M is prime or if M < 2N. Note that if M ≥ 2N, the
condition d≤M−N in the definition ofDM,N is redundant as no divisor ofM can be greater than
M−N. Moreover, the set SM,N is empty, if and only if DM,N is empty. The significance of these
sets will become evident in Theorems 3.6 and 3.8 and Corollary 3.7 below, but we mention
here that PM,N will determine the cardinality of the prime factors and SM,N the cardinality of
every possible divisor of the HTF. In the following example we calculate these sets for various
M,N ∈ N.

Example 2. (a) For primeM ∈ Z and any N ∈ N, we have PM,N = DM,N = SM,N = /0.
(b) ForM = 9, N = 2 or N = 3: DM,N = PM,N = {3}, SM,N = {3,6}.
(c) ForM = 9, N ≥ 4: DM,N = PM,N = SM,N = /0.
(d) ForM = 10, N = 2: DM,N = PM,N = {2,5}, SM,N = {2,4,5,6,8}.
(e) ForM = 10, N = 3,4 or 5: DM,N = PM,N = SM,N = {5}.
(f) ForM = 24, N = 2: DM,N = {2,3,4,6,8,12}, PM,N = {2,3}, SM,N = {2,3, . . . ,22}.
(g) ForM = 24, N = 3: DM,N = {3,4,6,8,12}, PM,N = {3,4}, SM,N = {3, . . . ,21}\{5,19}.
(h) ForM = 24, N = 4: DM,N = {4,6,8,12}, PM,N = {4,6}, SM,N = {4,6, . . . ,20}.

Given d ∈ N, the following well-known fact will be used repeatedly:

1
d

d−1

∑
k=0

e2πi kmd =

{
1 m ∈ dZ,
0 m ∈ Z\dZ.

(3.6)

We now state and prove the following result characterizing all HTFs that are prime.

Theorem 3.6. Let N,M ∈ N and s > 0 be given, and let Φ = {ϕk}Mk=1 = HTF(N,M,s) ⊂ CN.
Then Φ is prime if and only if DM,N = /0. In particular, if M is prime, then Φ is prime.

Proof. Suppose that Φ is prime and let us prove thatDM,N = /0. Assume by way of contradiction
that there exists d ∈ DM,N �= /0, i.e., d ≥ N is a divisor of M. Take J1 = I(d,1), where I(d,1) is
defined in (3.1). Then, for n ∈ {2, . . . ,d},

∑
m∈J1

(γn−1
M )m−1 =

d−1

∑
k=0

e
2πi
M (n−1)(kMd ) =

d−1

∑
k=0

e2πi k(n−1)
d = 0,

10 of 18



J. Lemvig, C. Miller, K. A. Okoudjou Prime tight frames

where the last equality follows from (3.6). Since d ≥ N, we see by Lemma 3.3 that Φ is (M,d)-
divisible with divisor Φ1 := ΦJ1 which is a contradiction.

We now prove that if Φ is not prime, then DM,N �= /0. Thus assume that Φ is (M,d)-divisible
for some d such that N ≤ d ≤ M−N. Let Φ = Φ1 ∪Φ2 be divisors of Φ, where Φ1 = ΦJ1
and Φ2 = ΦJ2 with #J1 = d and #J2 = M− d. By Lemma 3.3, we see that our assumption is
equivalent to assuming the existence of a index set J1 ⊂ {1, . . . ,M} of cardinality d such that

∑
m∈J1

(γn−1
M )m−1 = ∑

m∈Jn1

γm−1
M = 0 (3.7)

holds for each n= 2, . . . ,N, where Jn1 := (n−1)J1 modM. In particular, for n= 2, this means
that M is d-balancing, hence d = ∑rk=1 akpk and M−d = ∑rk=1 bkpk for ak,bk ∈ N0. Let R1 ⊂
{1, . . . ,r} be the indices k for which ak �= 0. We see that the index set J1 has the following form

J1 =
⋃
k∈R1

⋃
qk∈Qk

I(pk,qk) =
⋃
k∈R1

Ik, where Ik :=
⋃
qk∈Qk

I(pk,qk),

for some Qk ⊂ {1, . . . ,M/pk} with #Qk = ak for each k ∈ R1. We can assume without loss of
generality that, for i, j ∈ R1,

nipi �= n jp j for each ni = 1, . . . ,ai and n j = 1, . . . ,a j, (3.8)

whenever i �= j.
We need to prove that DM,N �= /0. It follows from d = ∑k∈R1 akpk that, if pk0 ≥ N for some

k0 ∈ R1, then pk0 ∈ DM,N �= /0, which concludes the proof. If however, pk < N for each k ∈ R1,
we claim that akpk ≥ N for each k ∈ R1. To show this claim, let k0 ∈ R1 be fixed and assume
pk < N for all k ∈ R1. Since pk < N is prime, it follows that

∑
m∈Ik

(γ(n−1)
M )m−1 = 0

for n = 2, . . . , pk, pk+ 2, . . . for k ∈ R1. We remark that pk0 is not a n j-multiple of any of the
other prime numbers p j for n j = 1, . . . ,a j by equation (3.8) which, in turn, implies that

∑
m∈J1\Ik0

(γ
pk0
M )m−1 = 0

for n= pk0 +1. Hence, it follows by the fact that Φ1 is a tight frame, that

∑
m∈Ik0

(γ
pk0
M )m−1 = pk ∑

q∈Qk0

(γ
pk0
M )q−1 = 0. (3.9)

The last equality is only possible if the index set Qk0 is of a certain size, in particular, #Qk0 ≥ 2
must be a divisor of M/pk0 . If M/pk0 is prime, then ak0 = #Qk0 =M/pk0 which is impossible.
Hence, M/pk0 is not prime. Let d1 be the smallest divisor of M/pk0. By (3.9) we then see
that #Qk0 = nd1 for some n ∈ N since Qk0 must be a union of n sets, say D1

� , � = 1, . . . ,n, of
cardinality d1. If d1pk0 > N, we are done. If not, we consider row n = d1pk0 + 1 in (3.7).
Repeating the argument above leads to

∑
q∈Qk0

(γ
d1pk0
M )q−1 = 0. (3.10)
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Note that (γ
d1pk0
M )q−1 is the same Mth root for all q ∈ D1

� when � is fixed. If M/(d1pk0) is
prime, then, by (3.9) and (3.10), #Qk0 =M/pk0 which is impossible. Hence, M/(d1pk0) is not
prime, and we let d2 be the smallest divisor ofM/(d1pk0). By (3.9) and (3.10) we then see that
#Qk0 = nd1d2 for some n ∈ N. We can continue the argument which proves the claim.

By the proof of the claim, we also see that ak0 pk0 is a divisor of M. Since we just proved
ak0pk0 > N, we arrive at the conclusion ak0pk0 ∈ DM,N �= /0.

The proof of the last statement in Theorem 3.6 is an easy consequence of the fact that if M
is prime, then DM,N = /0.

Remark 4. (a) The last part of the above result states that a HTF Φ = {ϕk}Mk=1 ⊂ CN with
M ≥ 2N is prime if M is prime. The converse of this is not true. Indeed, consider the HTF
with M = 9 and N = 4, see Example 2(c). This frame is prime, butM is not.

(b) Theorem 3.4 classifies all k for which M is k-balancing, but it does not give how to choose
the k distinct roots out of theM roots of unity. What the proof of Theorem 3.6 shows is that
for a HTF to be (M,d)-divisible, in addition to having a vanishing sub-sum of d distinct
Mth roots of unity, we must also ensure that the sub-sum of every nth power of these roots
of unity vanishes for n = 2, . . . ,N−1. We refer to Corollary 3.7 below for a statement on
how to choose the d distinct roots of unity so that all these sub-sums vanishes.
In case the HTF is divisible i.e., DM,N �= /0, the following result tells us how to factor it into

prime divisors. The proof follows from the proof of Theorem 3.6.

Corollary 3.7. Let N,M ∈ N and s > 0 be given, and let Φ = {ϕk}Mk=1 = HTF(N,M,s)⊂ CN.
Suppose that DM,N �= /0 and d <M. Then the following assertions are equivalent:
(i) d ∈ PM,N,
(ii) Φ factors into M/d prime FUNTFs each of cardinality d, that is,

Φ =

M/d⋃
i=1

Φi

with Φi being prime and #Φi = d.
Furthermore, one of the factors from assertion (ii), say Φ1, is the HTF with d frame vectors is
CN, that is,Φ1 =HTF(N,d,s). LetU = diag(γ0,γ1, . . . ,γN−1)∈U(N), where γ = exp(2π i/M).
The other factors are then given as Φi =Ui−1Φ1 for i= 1, . . . ,M/d.

By Corollary 3.7 we know exactly how the prime “building blocks” of a divisible HTF
look, hence we can use this structure to build larger divisors of the HTF. Suppose Φ is a HTF
and d ∈ DM,N �= /0. Then Φ is (M,d)-divisible, and, moreover, {ϕi}i∈I(d,q) is a tight frame for
any q = 1, . . . ,M/d. Now, we can combine these M/d tight frames of cardinality d into tight
frames of cardinality d,2d,3d, . . . ,M. Hence, Φ is also (M,nd)-divisible for n= 1, . . . ,M/d−1.
Assume further that M has another divisor which are also greater than N, say d̃ ∈ DM,N . We
can then combine unions of {ϕi}i∈I(d,q) with unions of {ϕi}i∈I(d̃,q̃), where q = 1, . . . ,M/d and
q̃ = 1, . . . ,M/d̃, respectively, as long as the index sets are disjoint. Hence, to combine tight
frames from different divisors, we only need to make sure that the same frame element ϕi does
not appear in both frames. We make these observations precise in the following result.

12 of 18



J. Lemvig, C. Miller, K. A. Okoudjou Prime tight frames

Theorem 3.8. Let M ≥ N ≥ 2, and Φ = {ϕk}Mk=1 ⊂ CN be a HTF. If DM,N �= /0, then Φ is
(M,s)-divisible for each s ∈ SM,N.

Proof. If DM,N �= /0, then Φ is (M,d)-divisible for any divisor d ofM such that N ≤ d ≤M−N.
We now show that Φ, in fact, is (M,s)-divisible for each s ∈ SM,N . By symmetry of the set
SM,N , it suffices to show that Φ is (M,s)-divisible for s ∈ SM,N with s≤M/2. For s ∈ SM,N we
have s= ∑Kk=1 akqk with ak ∈N0,qk ∈ PM,N and K = #PM,N. For each k= 1,2, . . .k construct an
N×qk matrix Φ(pk)

� based on the first qkth roots of unity. By shifting this matrix ak−1 times,
we will have a collection of ak such matrices. Next define

Φk =
[
Φ(qk)

1 Φ(qk)
2 · · · Φ(qk)

ak

]
.

Now Φk is an N×akqk matrix whose rows are mutually orthogonal. We then obtain an N×d
matrix

Φ̃1 =
[
Φ1 Φ2 · · · Φr

]
which is a FUNTF. Hence, Φ is (M,s)-divisible.

Casazza and Kovačević introduced the notion of generalized harmonic frames in [7] and
showed that these frames are unitarily equivalent to HTFs. Consequently, by Proposition 2.5,
the results obtained in this section for HTFs extend to a classification of prime and divisible
generalized HTFs.

3.3 Computational aspects of harmonic tight frames
For harmonic tight frames the prime building blocks are exactly described by Corollary 3.7.
We wish to suggest a strategy that can be used to design efficient numerical tools for signal
processing with divisible HTFs. Recall that, in analyzing a signal x∈CN with any type of frame,
one needs to compute c= {〈x,ϕi〉}Mi=1. A naïve way of computing the analysis step for divisible
harmonic tight frames would be to zero pad x∈CN into a vector x̂∈CM and then compute a full
FFT of x̂ of size M. However, Corollary 3.7 suggests a more effective analysis (and synthesis)
process. Let Φ = {ϕi}Mi=1 be a divisible HTF. Suppose p ∈ PM,N , where the set PM,N is defined
by (3.5). The indices Iq := I(p,q) = {kM/p+q : k = 0,1, . . . , p−1} for each q= 1, . . . ,M/p
are then the index sets of the M/p prime factors ΦIq := {ϕi}i∈Iq . By Corollary 3.7 these prime
factors are closely related, in fact, ΦIq =Uq−1ΦI1 , where U = diag(γ0,γ1, . . . ,γN−1) ∈ U(N)
is a unitary, diagonal matrix and γ the Mth root of unity. Note that ΦI1 is first N rows of a
p× p discrete Fourier matrix (up to scaling). Therefore, the analysis process of computing
{〈x,ϕi〉}Mi=1 for some signal x ∈ CN can be performed by first computing yq := (U∗)q−1x ∈ CN

for each q = 1, . . . ,M/p, then computing cIq := Φ∗
I1yq ∈ Cp for q = 1, . . . ,M/p, and finally

combining cIq for each q = 1, . . . ,M/p into c. The first step (U∗)q−1x is fast and stable since
U a is diagonal unitary, the second step is M/p FFTs of size only p, and the last step is simply
a rearrangement of the coefficients. The number of operations needed in this decomposition
strategy is of the order of M log2 p which should be compared to O(M log2M) operations for
the naïve strategy. However, more importantly, this decomposition can be implemented as
a parallel algorithm for each q = 1, . . . ,M/p, where we only have O(p log2 p) operations on
each processor; this will lead to a significant speed-up in the analysis step in multi-core and
multiprocessing systems. A similar speed-up procedure can be used for the synthesis process.
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In addition, recall that the worst-case coherence of a FUNTF Φ is given by

μΦ = max
k �=�

|〈ϕk,ϕ�〉| .

GivenM ≥ N, the coherence of Φ = HTF(N,M,1) is easily computed as

μΦ =
1
N

max
k �=�

∣∣∣∣∣N−1

∑
n=0

γn(k−�)
M

∣∣∣∣∣= 1
N

sin(πN/M)

sin(π/M)
=: μN,M

since the maximum is obtained for |k− �|= 1. If Φ = HTF(N,M,1) is divisible, then for each
p ∈ PM,N , each of itsM/p prime HTFs have the same coherence μ1, i.e.,

μ1 = μN,p =
1
N

sin(πN/p)
sin(π/p)

,

which clearly satisfies μ1 ≤ μΦ. In fact, we always have μ1 < μΦ if PM,N �= /0. Clearly, as the
redundancy grows, i.e.,M→ ∞ with N fixed, we see that μΦ ↗ 1. Thus decomposing divisible
HTFs in their prime factors, results in these divisors having smaller coherence, e.g., if p= dN,
we see that μ1 ↘ d sin(π/d)/π as N→ ∞. Moreover, for the typical range N ≤ p≤ 2N, we see
that μ1 ≤ 2/3 for any N ≥ 3.

3.4 Spectral Tetris frames
Recently, Casazza, Fickus, Mixon, Wang, and Zhou [5] introduced the spectral tetris method
as a mean to construct FUNTFs for RN for any given N,M ∈ N satisfying M ≥ 2N. One of
the key features of this class of frames is that they are sparse in the sense that the coefficient
vector of each frame element with respect to an orthonormal basis contains only few nonzero
entries [4]. For example, when N = 4 and M = 11, the spectral tetris construction yields the
frame Φ = {ϕi}∈I with I = {1,2, . . . ,11}:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1

√
3
8

√
3
8 0 0 0 0 0 0 0

0 0
√

5
8 −

√
5
8 1

√
1
4

√
1
4 0 0 0 0

0 0 0 0 0
√

3
4 −

√
3
4 1

√
1
8

√
1
8 0

0 0 0 0 0 0 0 0
√

7
8 −

√
7
8 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.11)

where the frame vectors of Φ appears as columns in the matrix. Observe that the first two
vectors are identical, which might be an undesirable for encoding because they lead to transform
coefficients 〈 f ,ϕi〉 carrying no new information [10]. Since E4 = {ϕi}i∈I1, I1 = {1,5,8,11}, is
an orthonormal basis, we see that Φ1 = Φ\E4 is a tight frame with redundancy reduced to 7/4,
and this can not be reduced further if tightness should be preserved. The reduced tight frame
Φ2 does not have the artifact of Φ with respect to repetition of vectors. Moreover, it is a tight
frame with redundancy M/N less than two, something that is not possible using spectral tetris
algorithms from [4,5]. Hence, this reduced tight frame possesses additional desirable properties
as compared to the original tight frame, without loosing the sparsity of the original frame Φ.

We prove below that all spectral tetris tight frames can be decomposed similarly, and we
characterize all prime spectral tetris frames. This characterization ultimately allows us to deter-
mine precisely when the spectral tetris construction works forM/N ≤ 2 (Corollary 3.10).
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Before proving our main results we recall how the spectral tetris method works. Given any
N,M ∈ N satisfying M ≥ 2N, let λ = M/N. The method was developed in [5] and extended
in [4]. Here, we shall consider spectral tetris frames constructed from the algorithms in [4, 5]
under the usual sparsity setup that the “tetris blocks” are of size 1×1 and 2×2.

We define K = {kn : n= 0,1, . . . ,gcd{N,M}}, where kn = nN
gcd{N,M} . For N,M ∈ N such

that λ =M/N ≥ 2 the spectral tetris frame STF(N,M) in RN is then given as theM columns of⎡⎢⎢⎢⎢⎢⎢⎣
1 · · · 1 a1 a1

b1 −b1 1 · · · 1 a2 a2
b2 −b2 1 · · ·

· · · 1 aN−1 aN−1︸ ︷︷ ︸
m1 times

︸ ︷︷ ︸
m2 times

bN−1 −bN−1 1 · · · 1︸ ︷︷ ︸
mN times

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where a j :=
√
r j
2 and b j :=

√
1− r j

2 , and r j ∈ [0,1) and mj ∈ N0, j = 1, . . . ,N are defined by

λ = mj+ r j, when j−1 ∈ K, (3.12)
λ = (2− r j−1)+mj+ r j, otherwise. (3.13)

If j ∈ K, the 2×2-block matrix Bj =
[a j a j
b j −b j

]
is left out. Note that r j = 0 exactly when j ∈ K.

The following result characterizes prime spectral tetris tight frames.

Theorem 3.9. Let N,M ∈ N such that λ :=M/N ≥ 2 be given. Suppose Φ is a spectral tetris
FUNTF of M vectors in RN associated with λ . Then, either Φ is prime, or Φ factors as

Φ = Φ1 ∪
L⋃
l=1
EN,

whereΦ1 is a prime FUNTF of M−LN vectors and EN =
{
e j
}N
j=1 is the standard orthonormal

basis for RN. Moreover, Φ is divisible exactly when the eigenvalue λ of the frame operator of
Φ satisfy

jλ −�( j−1)λ� ≥ 3 for all 1 < j <
N

gcd(N,M)
. (3.14)

In particular, Φ is divisible if λ ≥ 3− 1
N , i.e., M ≥ 3N−1.

Proof. Let {e j}Nj=1 denote the standard orthonormal basis of RN , and let Φ be a spectral tetris
frame. We will use the notation introduced above. We claim that Φ is divisible if and only if
e j ∈ Φ for all j = 1, . . . ,N. If e j ∈ Φ for all j = 1, . . . ,N, then Φ\{e j}Nj=1 and {e j}Nj=1 are tight
frames hence Φ is divisible. This shows one direction of the claim. Now, assume that e j0 /∈ Φ
for some j0 = 1, . . . ,N. In other words, we assume that mj0 = 0. We consider the two 2× 2
blocks Bj0−1 and Bj0 . Let i0 + l ∈ {1, . . . ,M} for l = 0,1,2,3 be the indices of the columns
of Φ associated with Bj0−1 and Bj0. Let ϕ j0 denote the j0th row of Φ. Assume towards a
contradiction that Φ = Φ1 ∪Φ2 is divisible, where Φ1 = {ϕi}i∈I1 and Φ1 = {ϕi}i∈I2 are tight
frames. The common support of the rows ϕ j0 and ϕ j0+1 is {i0 +2, i0+3}. Therefore, owing
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to orthogonality requirements of the rows, the frame vectors ϕi0+2 and ϕi0+3 need to belong to
the same divisor, say Φ1. This in turn means that ϕi0,ϕi0+1 ∈ Φ2 since Φ2 otherwise cannot
span RN . The square norm of the j0th row of Φ1 is a2

j0 + a
2
j0 = r j0, and the square norm of

the ( j0 +1)th row of Φ1 is at least b2
j0 +(−b j0)2 = 2− r j0. Since Φ1 has equal row norm, this

implies that r j0 ≥ 2− r j0, that is, r j0 ≥ 1 which contradicts r j0 ∈ [0,1). Hence, Φ is prime. This
completes the proof of the claim.

In [13] it is shown that e j ∈ Φ for all j = 1, . . . ,N if and only if

( j0 − kn)λ −�( j0−1− kn)λ� ≥ 3 (3.15)

for any j0 such that kn+ 1 < j0 < kn+1 for all n = 0,1, . . . ,gcd{N,M}. However, if (3.15)
is satisfied for one n = 0,1, . . . ,gcd{N,M}, then it is satisfied for all n = 0,1, . . . ,gcd{N,M}.
Hence, e j ∈ Φ for all j = 1, . . . ,N if and only if

j0λ −�( j0 −1)λ� ≥ 3

for all j0 satisfying 1 = k0 +1 < j0 < k1 = N/gcd{N,M}.

The prime FUNTF Φ1 from Theorem 3.9 is actually the output of the spectral tetris algo-
rithm with M−LN vectors. The frame bound of Φ1 is λ1 = M−LN

N = λ −L, which might be
strictly smaller than two. It is not difficult to see that the spectral tetris construction always
works whenM ≥ 2N−1, but it is in general difficult to see for whichM and N the construction
still works when N <M < 2N−1. The next result characterizes when this is indeed possible.
We denote the output of the spectral tetris algorithm STF(N,M) for all N,M ∈N. If the spectral
tetris does not work for the given N and M, we set STF(N,M) = /0.

Corollary 3.10. Let N,M̃ ∈ N be given such that N < M̃ < 2N. Define M = M̃+N and λ =
M/N ≥ 2. Then STF(N,M̃) is a FUNTF if and only if λ ,N and M satisfies (3.14).

We mention that Corollary 3.10 was subsequently and independently proved in [6].
Remark 5. (a) Let N,M ∈N, and let D be the common divisors of N andM. By Corollary 3.10

we see that STF(N,M) produces a FUNTF if and only if M ≥ 2N − 1 or M = 2N − d
for some d ∈ D. This result is somewhat disappointing since it implies that spectral tetris
frames with redundancy below two only are realizable by taking unions of spectral tetris
frames for subspaces, where the number of vectors for each subspace frame is two times
the subspace dimension minus one.

(b) Consider the frame STF(4,11) from (3.11). Since λ = 11/4,N = 4, and M = 11 satisfies
(3.14), it follows from Corollary 3.10 that STF(4,M̃) with M̃ = M−N = 7 produces a
FUNTF. Moreover, we see that STF(4,11) = STF(4,7)∪E4.
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