7 research outputs found

    In situ formation and photo patterning of emissive quantum dots in small organic molecules

    Get PDF
    Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in situ decomposition of a cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. In particular, we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices

    Aliphatic Polyurethane Elastomers Quaternized with Silane-Functionalized TiO2 Nanoparticles with UV-Shielding Features

    No full text
    The design of high-performance nanocomposites with improved mechanical, thermal or optical properties compared to starting polymers has generated special interest due to their use in a wide range of targeted applications. In the present work, polymer nanocomposites composed of polyurethane elastomers based on polycaprolactone or polycaprolactone/poly(ethylene glycol) soft segments and titanium dioxide (TiO2) nanoparticles as an inorganic filler were prepared and characterized. Initially, the surface of TiO2 nanoparticles was modified with (3-iodopropyl) trimethoxysilane as a coupling agent, and thereafter, the tertiary amine groups from polyurethane hard segments were quaternized with the silane-modified TiO2 nanoparticles in order to ensure covalent binding of the nanoparticles on the polymeric chains. In the preparation of polymer nanocomposites, two quaternization degrees were taken into account (1/1 and 1/0.5 molar ratios), and the resulting nanocomposite coatings were characterized by various methods (Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, contact angle, thermogravimetric analysis, dynamic mechanical thermal analysis). The mechanical parameters of the samples evaluated by tensile testing confirm the elastomeric character of the polyurethanes and of the corresponding composites, indicating the obtaining of highly flexible materials. The absorbance/transmittance measurements of PU/TiO2 thin films in the wavelength range of 200–700 nm show that these partially block UV-A radiation and all UV-B radiation from sunlight and could possibly be used as UV-protective elastomeric coatings

    Polymer Nanocomposites for Photocatalytic Applications

    No full text
    In the present comprehensive review we have specifically focused on polymer nanocomposites used as photocatalytic materials in fine organic reactions or in organic pollutants degradation. The selection of the polymer substrates for the immobilization of the active catalyst particles is motivated by several advantages displayed by them, such as: Environmental stability, chemical inertness and resistance to ultraviolet radiations, mechanical stability, low prices and ease availability. Additionally, the use of polymer nanocomposites as photocatalysts offers the possibility of a facile separation and reuse of the materials, eliminating thus the post-treatment separation processes and implicitly reducing the costs of the procedure. This review covers the polymer-based photocatalytic materials containing the most popular inorganic nanoparticles with good catalytic performance under UV or visible light, namely TiO2, ZnO, CeO2, or plasmonic (Ag, Au, Pt, Pd) NPs. The study is mainly targeted on the preparation, photocatalytic activity, strategies directed toward the increase of photocatalytic efficiency under visible light and reuse of the hybrid polymer catalysts

    Novel Hydrophobic Nanostructured Antibacterial Coatings for Metallic Surface Protection

    No full text
    A simple and cost-efficient method to modify different surfaces in order to improve their bioactivity, corrosion and wear resistance proved to be sol-gel coatings. The silane layers have been shown to be effective in the protection of steel, aluminum or magnesium alloys and copper and copper alloys. Moreover, it has been found that the adding of different inorganic nanoparticles into silica films leads to increasing their performance regarding corrosion protection. In this study, we fabricated, a simple sol-gel method, transparent mono- and bi-layered hydrophobic coatings with simultaneous antibacterial, hydrophobic and anti-corrosive properties for the protection of metallic surfaces against the action of air pollutants or from biological attacks of pathogens. The first layer (the base) of the coating contains silver (Ag) or zinc oxide (ZnO) nanoparticles with an antibacterial effect. The second layer includes zinc oxide nanoparticles with flower-like morphology to increase the hydrophobicity of the coating and to improve corrosion-resistant properties. The second layer of the coating contains a fluorinated silica derivative, 1H,1H,2H,2H-perfluorooctyl triethoxysilane (PFOTES), which contributes to the hydrophobic properties of the final coating by means of its hydrophobic groups. The mono- and bi-layered coatings with micro/nano rough structures have been applied by brushing on various substrates, including metallic surfaces (copper, brass and mild steel) and glass (microscope slides). The as-prepared coatings showed improved hydrophobic properties (water CA > 90°) when compared with the untreated substrates while maintaining the transparent aspect. The corrosion resistance tests revealed significantly lower values of the corrosion rates recorded for all the protected metallic surfaces, with the lowest values being measured for the bi-layered coatings containing ZnO particles, both in the first and in the second layers of the coating. Considering the antibacterial activity, the most effective were the AOAg-II and AOZnO-II coatings, which exhibited the highest reduction of microbial growth

    In situ formation and photo patterning of emissive quantum dots in organic small molecules

    No full text
    We acknowledge financial support from FP7 LAMP project “Laser Induced Synthesis of Polymeric Nanocomposite Materials and Development of Micro-patterned Hybrid Light Emitting Diodes (LED) and Transistors (LET)” (Grant No. 247928). AKB and IDWS also acknowledge financial support from EPSRC Programme grant “Challenging the limits of photonics: Structured light” EP/J01771X/1. In addition IDWS acknowledges a Royal Society Wolfson Research Merit Award.Nanostructured composites of inorganic and organic materials are attracting extensive interest for electronic and optoelectronic device applications. Here we report a novel method for the fabrication and patterning of metal selenide nanoparticles in organic semiconductor films that is compatible with solution processable large area device manufacturing. Our approach is based upon the controlled in-situ decomposition of cadmium selenide precursor complex in a film of the electron transporting material 1,3,5-tris(N-phenyl-benzimidazol-2-yl)-benzene (TPBI) by thermal and optical methods. Specifically we show that the photoluminescence quantum yield (PLQY) of the thermally converted CdSe quantum dots (QDs) in the TPBI film is up to 15%. We also show that laser illumination can form the QDs from the precursor. This is an important result as it enables direct laser patterning (DLP) of the QDs. DLP was performed on these nanocomposites using a picosecond laser. Confocal microscopy shows the formation of emissive QDs after laser irradiation. The optical and structural properties of the QDs were also analysed by means of UV-Vis, PL spectroscopy and transmission electron microscopy (TEM). The results show that the QDs are well distributed across the film and their emission can be tuned over a wide range by varying the temperature or irradiated laser power on the blend films. Our findings provide a route to the low cost patterning of hybrid electroluminescent devices.Publisher PDFPeer reviewe
    corecore