22 research outputs found

    Systematically Variable Planktonic Carbon Metabolism Along a Land-To-Lake Gradient in a Great Lakes Coastal Zone

    Get PDF
    During the summers of 2002–2013, we measured rates of carbon metabolism in surface waters of six sites across a land-to-lake gradient from the upstream end of drowned river-mouth Muskegon Lake (ML) (freshwater estuary) to 19 km offshore in Lake Michigan (LM) (a Great Lake). Despite considerable inter-year variability, the average rates of gross production (GP), respiration (R) and net production (NP) across ML (604 ± 58, 222 ± 22 and 381 ± 52 ”g C L−1 day−1, respectively) decreased steeply in the furthest offshore LM site (22 ± 3, 55 ± 17 and −33 ± 15 ”g C L−1day−1, respectively). Along this land-to-lake gradient, GP decreased by 96 ± 1%, whereas R only decreased by 75 ± 9%, variably influencing the carbon balance along this coastal zone. All ML sites were consistently net autotrophic (mean GP:R = 2.7), while the furthest offshore LM site was net heterotrophic (mean GP:R = 0.4). Our study suggests that pelagic waters of this Great Lakes coastal estuary are net carbon sinks that transition into net carbon sources offshore. Reactive and dynamic estuarine coastal zones everywhere may contribute similarly to regional and global carbon cycles

    Association of Chronic Hepatitis C Infection With T-Cell Phenotypes in HIV-Negative and HIV-Positive Women

    Get PDF
    Background: Hepatitis C virus (HCV) viremia is thought to have broad systemic effects on the cellular immune system that go beyond its impact on just those T cells that are HCV specific. However, previous studies of chronic HCV and circulating T-cell subsets (activation and differentiation phenotypes) in HIV negatives used general population controls, rather than a risk-appropriate comparison group. Studies in HIV positives did not address overall immune status (total CD4 + count). Methods: We used fresh blood from HIV-positive and at-risk HIVnegative women, with and without chronic HCV, to measure percentages of activated CD4 + and CD8 + T cells, Tregs, and T-cell differentiation phenotypes (naive, central memory, effector memory (EM), and terminally differentiated effector). This included 158 HIV negatives and 464 HIV positives, of whom 18 and 63, respectively, were HCV viremic. Results: In multivariate models of HIV negatives, HCV viremia was associated with 25% fewer naive CD4 + (P = 0.03), 33% more EM CD4 + (P = 0.0002), and 37% fewer central memory CD8 + (P = 0.02) T cells. Among HIV positives, we observed only 1 of these 3 relationships: higher percentage of EM CD4 + among HCV viremic women. Furthermore, the association with EM CD4 + among HIV positives was limited to individuals with diminished immune status (total CD4 + count #500 cells/mL), as were associations of HCV viremia with higher percentages of activated CD4 + and Tregs. Among HIV positives with high CD4 + count, no significant associations were observed. Conclusions: These data suggest that HCV viremia in HIV negatives is associated with accelerated T-cell differentiation, but among HIV positives, the impact of HCV viremia is less straightforward and varies by total CD4 + count

    Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits

    Get PDF
    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Throug

    Changing Habitat Use Associated with Distributional Shifts of Wintering Raptors

    No full text
    There is widespread evidence that multiple drivers of global change, such as habitat degradation, invasive species, and climate change, are influencing wildlife. Understanding how these drivers interact with and affect species may be difficult because outcomes depend on the magnitude and duration of environmental change and the life history of the organism. In addition, various environmental drivers may be evaluated and managed at different spatial scales. We used a historical dataset from 1991 to 1994 and current information from 2010 to 2012 to examine whether occupancy patterns of wintering raptors were consistent with regional changes in distribution or habitat conditions within a local management unit, the Morley Nelson Snake River Birds of Prey National Conservation Area (NCA). We predicted that if local populations reflected regional shifts, then rates of raptor occupancy within the NCA would be higher compared to historical estimates and birds would use different habitats compared to historical use. Alternatively, if local populations were determined by habitat conditions, then we predicted that occupancy rate of raptors within the NCA would be lower compared to historical estimates and current habitat use would be consistent with historical use. Results support the hypothesis that northward distributional shifts influenced wintering raptor populations in southwest Idaho to a greater extent than local habitat conditions. Wintering raptors had higher occupancy rates in 2010–2012 compared to 1991–1994, whereas invasive grasses have increased and native shrubs have decreased suggesting that habitat suitability for raptors has declined over time. On the species level, changes in habitat use were associated with greater increases in occupancy rates in 2010–2012 compared to 1991–1994. Organisms flexible in their habitat use may be better able to respond to continental forces driving distribution shifts. Conversely, habitat or prey specialists may be poorly equipped to handle such rapid, large-scale global change. Further, Grinnellian niche models predicting species response to change by mapping current habitat use to forecasted vegetation maps should consider plasticity in habitat use and changes in the cost-benefits of life-history strategies
    corecore