26 research outputs found

    Assessing the predictive power of step selection functions: how social and environmental interactions affect animal space use

    Get PDF
    1. The ability to predict animal space use patterns is a fundamental concern in changing environments. Such predictions require a detailed understanding of the movement mechanisms from which spatial distributions emerge. However, these are typically complex, multifaceted, and therefore difficult to uncover. 2. Here, we provide a methodological framework for uncovering the movement mechanisms necessary for building predictive models of animal space use. Our procedure begins by parametrising a movement model of each individual in a population using step selection analysis, from which we build an individual-based model (IBM) of interacting individuals, derive predicted broad-scale space use patterns from the IBM and then compare the predicted and empirical patterns. Importantly, discrepancies between these predicted and empirical patterns are used to formulate new hypotheses about the drivers of animal movement decisions and thus iteratively improve the model's predictive power. We demonstrate our method on a population of feral pigs in Mississippi, USA. 3. Our technique incorporates both social interactions between individuals and environmental drivers of movement. At each iteration of model construction, we were able to identify missing features to improve model prediction by analysing the IBM output. These include overuse-avoidance effects of self-attractive mechanisms (i.e. attraction to previously visited sites becomes repulsion if there have been multiple visits in quick succession), which were vital for ensuring predicted occurrence distributions do not become vanishingly small. 4. Overall, we have provided a general method for iteratively improving the predictive power of step selection models. This will enable future researchers to maximise the information obtained from step selection analyses and to highlight potentially missing data for uncovering the drivers of movement decisions and emergent space use patterns. Ultimately, this provides a fundamental step towards the general aim of constructing predictive models of animal space use

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Combining animal interactions and habitat selection into models of space use: a case study with white‐tailed deer

    No full text
    Animals determine their daily movement trajectories in response to a network of ecological processes, including interactions with other organisms, their memories of previous events, and the changing environment. These combine to cause the emergent space use patterns observed over longer periods of time, such as a whole season. Understanding which processes cause these patterns to emerge, and how, requires a process-based modelling approach. Individual-based decisions can be described as a system of partial-differential equations (PDEs) to produce a dynamic description of space use built from the underlying movement process. Here we combine PDE-based models with step-selection analysis to investigate the combined effects of three established ecological processes that partially shape movement and space use: 1) a heterogeneous environment; 2) the environmental markings of moving conspecifics; and 3) the memory of direct interactions with conspecifics. We apply this framework to a large GPS-based dataset of white-tailed deer Odocoileus virginianus in the southeastern US. We fit models at the population level to provide predictive models, then tailor these to fit individual deer. We specifically incorporate relationships between each possible pair of deer and define each animal's responses to their unique local environments using separate integrated step-selection analyses. We show how individual movements and decisions yield emergent patterns in animal distributions, and we provide a full generalised description of the framework so that it may be applied to any species simultaneously responding to multiple potentially interacting stimuli (e.g. sociality, morphology, etc.). We found that the population of bucks had highly varied preferences for vegetation, but were shaping their space use in response to conspecific interactions, dependent on the individual relationships between two deer. We advocate for increased consideration of individual-based movement rules as determinants of realized animal space use, and particularly how these affect emergent distributions of entire species

    Social interactions and habitat structure in understanding the dynamic space use of invasive wild pigs

    No full text
    Untangling the abiotic and biotic feedback mechanisms driving animal movements and ranges is a core question in ecology, yet progress is hampered by inadequate modelling procedures. Here we show how a recently developed process-based modelling approach, combining step-selection functions and individual-based models, enables a flexible method to infer movement drivers and multi-scale emergent space use patterns. As a case study, we examine the movement behaviours of a highly invasive social generalist (wild pigs, Sus scrofa) in relation to conspecific space use and multiple land cover types in a complex agricultural landscape, showing that social interactions are predominantly more important to this species than selection for land cover. Thus, animal movement studies should not neglect the effects of sociality when inferring resource driven movements and, crucially, use multi-scale techniques that incorporate movement processes to untangle drivers of animal space use

    Activation of anopheles stephensi pantothenate kinase and coenzyme a biosynthesis reduces infection with diverse plasmodium species in the mosquito host

    No full text
    Malaria parasites require pantothenate from both human and mosquito hosts to synthesize coenzyme A (CoA). Specifically, mosquito-stage parasites cannot synthesize pantothenate de novo or take up preformed CoA from the mosquito host, making it essential for the parasite to obtain pantothenate from mosquito stores. This makes pantothenate utilization an attractive target for controlling sexual stage malaria parasites in the mosquito. CoA is synthesized from pantothenate in a multi-step pathway initiated by the enzyme pantothenate kinase (PanK). In this work, we manipulated A. stephensi PanK activity and assessed the impact of mosquito PanK activity on the development of two malaria parasite species with distinct genetics and life cycles: the human parasite Plasmodium falciparum and the mouse parasite Plasmodium yoelii yoelii 17XNL. We identified two putative A. stephensi PanK isoforms encoded by a single gene and expressed in the mosquito midgut. Using both RNAi and small molecules with reported activity against human PanK, we confirmed that A. stephensi PanK manipulation was associated with corresponding changes in midgut CoA levels. Based on these findings, we used two small molecule modulators of human PanK activity (PZ-2891, compound 7) at reported and ten-fold EC50 doses to examine the effects of manipulating A. stephensi PanK on malaria parasite infection success. Our data showed that oral provisioning of 1.3 nM and 13 nM PZ-2891 increased midgut CoA levels and significantly decreased infection success for both Plasmodium species. In contrast, oral provisioning of 62 nM and 620 nM compound 7 decreased CoA levels and significantly increased infection success for both Plasmodium species. This work establishes the A. stephensi CoA biosynthesis pathway as a potential target for broadly blocking malaria parasite development in anopheline hosts. We envision this strategy, with small molecule PanK modulators delivered to mosquitoes via attractive bait stations, working in concert with deployment of parasite-directed novel pantothenamide drugs to block parasite infection in the human host. In mosquitoes, depletion of pantothenate through manipulation to increase CoA biosynthesis is expected to negatively impact Plasmodium survival by starving the parasite of this essential nutrient. This has the potential to kill both wild type parasites and pantothenamide-resistant parasites that could develop under pantothenamide drug pressure if these compounds are used as future therapeutics for human malaria. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation

    No full text
    Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI
    corecore