38 research outputs found
ΠΠΏΠ»ΠΈΠ² ΡΠ½Π³ΡΠ±ΡΡΠΎΡΡΠ² Π°ΡΠΎΠΌΠ°ΡΠ°Π·ΠΈ Π½Π° Π²ΠΌΡΡΡ Π·Π°Π³Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π±ΡΠ»ΠΊΠ° Π²ΡΡΡΠ΅ΡΠ°Π»ΡΠ½ΠΎΡ ΠΆΠΈΡΠΎΠ²ΠΎΡ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΏΡΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΡΠ½ΠΎΠΌΡ ΡΠΈΠ½Π΄ΡΠΎΠΌΡ Ρ Ρ ΠΎΠΌβΡΡΠΊΡΠ²
Topicality. Recently, more attention has been paid to the role of the peripheral aromatase reaction enhancement in pathogenesis of obesity and metabolic syndrome. About 39 % of men and 40 % of women over 18 around the world are overweight (BMI > 25) and in almost all cases they have an imbalance of sex hormones, which is caused by increased aromatase activity of adipose tissue.Aim. To study the effect of aromatase inhibitors on the parameters of total body weight, protein content in adipose tissue and their correlation in hamsters with experimental metabolic syndrome.Materials and methods. Protein content in the visceral adipose tissue homogenate was detected by the Lowry method in the Hartree modification. Statistical processing of the results was carried out by variational statistics methods using nonparametric methods of analysis, the interrelations between the signs were determined by the Pearson linear correlation coefficient.Results and discussion. The most effective drug from the group of aromatase inhibitors which reduced hypertrophic growth of adipose tissue in all animals both sexes and ages was letrozole. Anastrozole and exemestane showed less efficacy, and had a better effect on young animals.Conclusions. The letrozole administration at a dose of 0.309 mg/kg resulted in a significant decrease in the average body weight by 24-35 % and a corresponding increase in protein content of visceral adipose tissue by 12-46 % with a high correlation coefficient.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ. Π ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ Π²ΡΠ΅ΠΌΡ Π²ΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΡ ΡΠ΄Π΅Π»ΡΠ΅ΡΡΡ ΡΠΎΠ»ΠΈ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π°ΡΠΎΠΌΠ°ΡΠ°Π·Π½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Π΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΎΠΆΠΈΡΠ΅Π½ΠΈΡ ΠΈ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΈΠ½Π΄ΡΠΎΠΌΠ°. ΠΠΊΠΎΠ»ΠΎ 39Β % ΠΌΡΠΆΡΠΈΠ½ ΠΈ 40Β % ΠΆΠ΅Π½ΡΠΈΠ½ ΡΡΠ°ΡΡΠ΅ 18-ΠΈ Π»Π΅Ρ ΠΏΠΎ Π²ΡΠ΅ΠΌΡ ΠΌΠΈΡΡ ΡΡΡΠ°Π΄Π°ΡΡ ΠΎΡ ΠΈΠ·Π±ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΠ° (ΠΠΠ’ > 25) ΠΈ Ρ ΡΠ°ΠΊΠΈΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΏΠΎΡΡΠΈ Π²ΠΎ Π²ΡΠ΅Ρ
ΡΠ»ΡΡΠ°ΡΡ
ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ ΠΏΠΎΠ»ΠΎΠ²ΡΡ
Π³ΠΎΡΠΌΠΎΠ½ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΡΡΠΈΠ»Π΅Π½ΠΈΡ Π°ΡΠΎΠΌΠ°ΡΠ°Π·Π½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ.Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² Π°ΡΠΎΠΌΠ°ΡΠ°Π·Ρ Π½Π° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΎΠ±ΡΠ΅ΠΉ ΠΌΠ°ΡΡΡ ΡΠ΅Π»Π°, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Π² ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ ΠΈ ΠΈΡ
ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ Ρ Ρ
ΠΎΠΌΡΡΠΊΠΎΠ² Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠ° Π² Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΠ΅ Π²ΠΈΡΡΠ΅ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΏΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΠΎΡΡΠΈ Π² ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π₯Π°ΡΡΡΠΈ. Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π°, Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΏΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΠΈΡΡΠΎΠ½Π°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΈΡ
ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠΌ ΠΈΠ· Π³ΡΡΠΏΠΏΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΠΎΠ² Π°ΡΠΎΠΌΠ°ΡΠ°Π·Ρ Π² ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ Π³ΠΈΠΏΠ΅ΡΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ° ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ Ρ Π²ΡΠ΅Ρ
ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ ΠΎΡ ΠΏΠΎΠ»Π° ΠΈ Π²ΠΎΠ·ΡΠ°ΡΡΠ° ΠΏΠΎΠΊΠ°Π·Π°Π» ΡΠ΅Π±Ρ Π»Π΅ΡΡΠΎΠ·ΠΎΠ». ΠΠ½Π°ΡΡΡΠΎΠ·ΠΎΠ» ΠΈ ΡΠΊΠ·Π΅ΠΌΠ΅ΡΡΠ°Π½ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅Π½ΡΡΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ Π»ΡΡΡΠ΅ Π²Π»ΠΈΡΠ»ΠΈ Π½Π° ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»Π΅ΡΡΠΎΠ·ΠΎΠ»Π° Π² Π΄ΠΎΠ·Π΅ 0,309 ΠΌΠ³/ΠΊΠ³ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠ»ΠΎ ΠΊ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΠΌΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠ°ΡΡΡ ΡΠ΅Π»Π° Π½Π° 24-35Β % ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π±Π΅Π»ΠΊΠ° Π² Π²ΠΈΡΡΠ΅ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΆΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ Π½Π° 12-46Β % Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ.ΠΠΊΡΡΠ°Π»ΡΠ½ΡΡΡΡ. Π ΠΎΡΡΠ°Π½Π½Ρ ΡΠΎΠΊΠΈ Π²ΡΠ΅ Π±ΡΠ»ΡΡΠ΅ ΡΠ²Π°Π³ΠΈ ΠΏΡΠΈΠ΄ΡΠ»ΡΡΡΡΡΡ ΡΠΎΠ»Ρ ΠΏΠΎΡΠΈΠ»Π΅Π½Π½Ρ ΠΏΠ΅ΡΠΈΡΠ΅ΡΠΈΡΠ½ΠΎΡ Π°ΡΠΎΠΌΠ°ΡΠ°Π·Π½ΠΎΡ ΡΠ΅Π°ΠΊΡΡΡ Π² ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅Π·Ρ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΠΎΠΆΠΈΡΡΠ½Π½Ρ Ρ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ½Π΄ΡΠΎΠΌΡ. ΠΠ»ΠΈΠ·ΡΠΊΠΎ 39Β % ΡΠΎΠ»ΠΎΠ²ΡΠΊΡΠ² ΡΠ° 40Β % ΠΆΡΠ½ΠΎΠΊ ΡΡΠ°ΡΡΠ΅ 18-ΠΈ ΡΠΎΠΊΡΠ² ΠΏΠΎ Π²ΡΡΠΎΠΌΡ ΡΠ²ΡΡΡ ΡΡΡΠ°ΠΆΠ΄Π°ΡΡΡ Π²ΡΠ΄ Π½Π°Π΄ΠΌΡΡΠ½ΠΎΡ Π²Π°Π³ΠΈ (ΠΠΠ’ > 25) Ρ Ρ ΡΠ°ΠΊΠΈΡ
ΠΏΠ°ΡΡΡΠ½ΡΡΠ² ΠΌΠ°ΠΉΠΆΠ΅ Π² ΡΡΡΡ
Π²ΠΈΠΏΠ°Π΄ΠΊΠ°Ρ
Π²ΡΠ΄ΠΌΡΡΠ°ΡΡΡΡΡ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ ΡΡΠ°ΡΠ΅Π²ΠΈΡ
Π³ΠΎΡΠΌΠΎΠ½ΡΠ², ΡΠΊΠΈΠΉ Ρ Π½Π°ΡΠ»ΡΠ΄ΠΊΠΎΠΌ ΠΏΠΎΡΠΈΠ»Π΅Π½Π½Ρ Π°ΡΠΎΠΌΠ°ΡΠ°Π·Π½ΠΎΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΆΠΈΡΠΎΠ²ΠΎΡ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ.ΠΠ΅ΡΠ° ΡΠΎΠ±ΠΎΡΠΈ. ΠΠΎΡΠ»ΡΠ΄ΠΈΡΠΈ Π²ΠΏΠ»ΠΈΠ² ΡΠ½Π³ΡΠ±ΡΡΠΎΡΡΠ² Π°ΡΠΎΠΌΠ°ΡΠ°Π·ΠΈ Π½Π° ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π·Π°Π³Π°Π»ΡΠ½ΠΎΡ ΠΌΠ°ΡΠΈ ΡΡΠ»Π°, Π²ΠΌΡΡΡΡ Π±ΡΠ»ΠΊΠ° Π² ΠΆΠΈΡΠΎΠ²ΡΠΉ ΡΠΊΠ°Π½ΠΈΠ½Ρ ΡΠ° ΡΡ
ΠΊΠΎΡΠ΅Π»ΡΡΡΡ Ρ Ρ
ΠΎΠΌβΡΡΠΊΡΠ² Π· Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΈΠΌ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΡΡΠ½ΠΈΠΌ ΡΠΈΠ½Π΄ΡΠΎΠΌΠΎΠΌ.ΠΠ°ΡΠ΅ΡΡΠ°Π»ΠΈ ΡΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈ. ΠΠΌΡΡΡ Π±ΡΠ»ΠΊΠ° Π² Π³ΠΎΠΌΠΎΠ³Π΅Π½Π°ΡΡ Π²ΡΡΡΠ΅ΡΠ°Π»ΡΠ½ΠΎΡ ΠΆΠΈΡΠΎΠ²ΠΎΡ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π·Π° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠΎΡΡΡ Π² ΠΌΠΎΠ΄ΠΈΡΡΠΊΠ°ΡΡΡ Π₯Π°ΡΡΡΡ. Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ½Ρ ΠΎΠ±ΡΠΎΠ±ΠΊΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π²Π°ΡΡΠ°ΡΡΠΉΠ½ΠΎΡ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠΈ Π· Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½ΡΠΌ Π½Π΅ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ½ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΡΠ² Π°Π½Π°Π»ΡΠ·Ρ, Π²Π·Π°ΡΠΌΠΎΠ·Π²βΡΠ·ΠΊΠΈ ΠΌΡΠΆ ΠΎΠ·Π½Π°ΠΊΠ°ΠΌΠΈ Π²ΠΈΠ·Π½Π°ΡΠ°Π»ΠΈ Π·Π° ΠΊΠΎΠ΅ΡΡΡΡΡΠ½ΡΠΎΠΌ Π»ΡΠ½ΡΠΉΠ½ΠΎΡ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ ΠΡΡΡΠΎΠ½Π°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΡΠ° ΡΡ
ΠΎΠ±Π³ΠΎΠ²ΠΎΡΠ΅Π½Π½Ρ. ΠΠ°ΠΉΠ΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΠΈΠΌ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠΌ Π· Π³ΡΡΠΏΠΈ ΡΠ½Π³ΡΠ±ΡΡΠΎΡΡΠ² Π°ΡΠΎΠΌΠ°ΡΠ°Π·ΠΈ ΠΏΡΠΈ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ Π³ΡΠΏΠ΅ΡΡΡΠΎΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΡ ΠΆΠΈΡΠΎΠ²ΠΎΡ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ Ρ Π²ΡΡΡ
ΡΠ²Π°ΡΠΈΠ½ Π½Π΅Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²ΡΠ΄ ΡΡΠ°ΡΡ Ρ Π²ΡΠΊΡ ΠΏΠΎΠΊΠ°Π·Π°Π² ΡΠ΅Π±Π΅ Π»Π΅ΡΡΠΎΠ·ΠΎΠ». ΠΠ½Π°ΡΡΡΠΎΠ·ΠΎΠ» Ρ Π΅ΠΊΠ·Π΅ΠΌΠ΅ΡΡΠ°Π½ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π΄Π΅ΡΠΎ ΠΌΠ΅Π½ΡΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡΡΡ Ρ ΠΊΡΠ°ΡΠ΅ Π²ΠΏΠ»ΠΈΠ²Π°Π»ΠΈ Π½Π° ΡΠ²Π°ΡΠΈΠ½ ΠΌΠΎΠ»ΠΎΠ΄ΠΎΠ³ΠΎ Π²ΡΠΊΡ.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. ΠΠ²Π΅Π΄Π΅Π½Π½Ρ Π»Π΅ΡΡΠΎΠ·ΠΎΠ»Ρ Π² Π΄ΠΎΠ·Ρ 0,309 ΠΌΠ³/ΠΊΠ³ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΠ² Π΄ΠΎ Π²ΡΡΠΎΠ³ΡΠ΄Π½ΠΎΠ³ΠΎ Π·ΠΌΠ΅Π½ΡΠ΅Π½Π½Ρ ΡΠ΅ΡΠ΅Π΄Π½ΡΠΎΡ ΠΌΠ°ΡΠΈ ΡΡΠ»Π° Π½Π° 24-35Β % Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎΠ³ΠΎ Π·Π±ΡΠ»ΡΡΠ΅Π½Π½Ρ Π²ΠΌΡΡΡΡ Π±ΡΠ»ΠΊΠ° Π² Π²ΡΡΡΠ΅ΡΠ°Π»ΡΠ½ΡΠΉ ΠΆΠΈΡΠΎΠ²ΡΠΉ ΡΠΊΠ°Π½ΠΈΠ½Ρ Π½Π° 12-46Β % Π· Π²ΠΈΡΠΎΠΊΠΈΠΌ ΠΊΠΎΠ΅ΡΡΡΡΡΠ½ΡΠΎΠΌ ΠΊΠΎΡΠ΅Π»ΡΡΡΡ
Heat kernel of non-minimal gauge field kinetic operators on Moyal plane
We generalize the Endo formula originally developed for the computation of
the heat kernel asymptotic expansion for non-minimal operators in commutative
gauge theories to the noncommutative case. In this way, the first three
non-zero heat trace coefficients of the non-minimal U(N) gauge field kinetic
operator on the Moyal plane taken in an arbitrary background are calculated. We
show that the non-planar part of the heat trace asymptotics is determined by
U(1) sector of the gauge model. The non-planar or mixed heat kernel
coefficients are shown to be gauge-fixing dependent in any dimension of
space-time. In the case of the degenerate deformation parameter the lowest
mixed coefficients in the heat expansion produce non-local gauge-fixing
dependent singularities of the one-loop effective action that destroy the
renormalizability of the U(N) model at one-loop level. The twisted-gauge
transformation approach is discussed.Comment: 21 pages, misprints correcte
The quark contents of the nucleon and their implication for dark matter search
7 pages, 6 figures, talk given at the 31st International Symposium on Lattice Field Theory (Lattice 2013), July 29-August 3 2013, Mainz, GermanyWe present results concerning the light and strange quark contents of the nucleon using flavours of maximally twisted mass fermions. The corresponding -terms are casting light on the origin of the nucleon mass and their values are important to interpret experimental data from direct dark matter searches. We discuss our strategy to estimate systematic uncertainties arising in our computations. Our preliminary results for the terms read \sigma_{\pi N} = 37(2.6)(24.7) \mev and \sigma_s=28(8)(10) \mev. We present our recent final analysis of the parameter and found including systematics\cite{Alexandrou:2013nda}
Sigma terms and strangeness content of the nucleon with twisted mass fermions
7 pages, 6 figures. Talk given at the XXX International Symposium on Lattice Field Theory - Lattice 2012, June 24-29, 2012 Cairns, AustraliaWe investigate excited state contaminations in a direct computation of the nucleon -terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (,), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange -terms, where it can be as big as ). This leads to the unfortunate conclusion that even with a source-sink separation of \sim 1.5 \fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity
Evaluation of disconnected contributions using GPUs
7 pages, 10 figuresWe calculate on GPUs the disconnected diagrams associated with the nucleon form factors and moments of generalized parton distributions using Nf=2+1+1 twisted mass fermions. We employ the truncated solver method (TSM) for estimating the all-to-all propagators. Due to the fact that the TSM involves many low precision stochastic estimators, the usage of GPUs is essential to perform efficiently the contractions and the inversions
Chapter 14 Lower Permian and Devonian carbonate reservoir rocks in the onshore and offshore areas of the Pechora Sea
<p>In the northern part of the VarandeyβAdzva zone carbonate reservoirs have developed that have porosity favourable for oil
and gas accumulations. The void space in these reservoirs, besides primary porosity, is associated with fracturing, giving
rise to good reservoir potential in both the onshore and offshore parts of the VarandeyβAdzva zone. The similarity of today's
structure and the development during the main stages of geological history for offshore and onshore parts, the availability
in the section of productive oil- and gas-bearing reservoirs, the high capacity of the reservoirs, the uniformity of lithofacial
composition of the productive intervals and the uniqueness of the deposits structure β all these features contribute to the
oil and gas potential of the Pechora Sea structures.
</p
Prosjektbasert kunnskapsoverfΓΈring - digitalisering som konkurransefortrinn
A number of stochastic methods developed for the calculation of fermion loops are investigated and compared, in particular with respect to their efficiency when implemented on Graphics Processing Units (GPUs). We assess the performance of the various methods by studying the convergence and statistical accuracy obtained for observables that require a large number of stochastic noise vectors, such as the isoscalar nucleon axial charge. The various methods are also examined for the evaluation of sigma-terms where noise reduction techniques specific to the twisted mass formulation can be utilized thus reducing the required number of stochastic noise vectors
GENETIC DIVERSITY OF BREAD WHEAT LANDRACES COLLECTED BY SCIENTIFIC EXPEDITIONS IN AFGHANISTAN
N.I. Vavilov considered the territory of Afghanistan where one of the initial farming centers was generated to be part of the Middle Asian center of crop origin and diversity. Hexaploid 42-chromosomal wheat with the genome constitutionΒ AABBDD was also attributed to that center. Scientific expeditions from different countries surveyed repeatedly the agricultural regions of Afghanistan to collect wild and cultivated plants. The collected material from those regions is preserved at various seed banks. The distribution of Afghani landraces of bread wheat (Triticum aestivum L.) from the Vavilov Institute of Plant Industry and Australian collections depending on elevation above sea level and climatic conditions (humidity/aridity) is discussed. Data about sources of valuable traits for breeding identified among the accessions of Afghani bread wheat are presented. A set of 116 genotypes was analyzed for 13 microsatellite loci to investigate the structure of wheat genetic diversity