377 research outputs found

    Machine Learning-Based Indoor Relative Humidity and CO2 Identification Using a Piecewise Autoregressive Exogenous Model: A Cob Prototype Study

    Get PDF
    The population of developed nations spends a significant amount of time indoors, and the implications of poor indoor air quality (IAQ) on human health are substantial. Many premature deaths attributed to exposure to indoor air pollutants result from diseases exacerbated by poor indoor air. CO2, one of these pollutants, is the most prevalent and often serves as an indicator of IAQ. Indoor CO2 concentrations can be significantly higher than outdoor levels due to human respiration and activity. The primary objective of this research was to numerically investigate the indoor relative humidity and CO2 in cob buildings through the CobBauge prototype, particularly during the first months following the building delivery. Both in situ experimental studies and numerical predictions using an artificial neural network were conducted for this purpose. The study presented the use of a piecewise autoregressive exogenous model (PWARX) for indoor relative humidity (RH) and CO2 content in a building constructed with a double walling system consisting of cob and light earth. The model was validated using experimental data collected over a 27-day period, during which indoor RH and CO2 levels were measured alongside external conditions. The results indicate that the PWARX model accurately predicted RH levels and categorized them into distinct states based on moisture content within materials and external conditions. However, while the model accurately predicted indoor CO2 levels, it faced challenges in finely classifying them due to the complex interplay of factors influencing CO2 levels in indoor environments

    Narrow genetic base in forest restoration with holm oak (Quercus ilex L.) in Sicily

    Full text link
    In order to empirically assess the effect of actual seed sampling strategy on genetic diversity of holm oak (Quercus ilex) forestations in Sicily, we have analysed the genetic composition of two seedling lots (nursery stock and plantation) and their known natural seed origin stand by means of six nuclear microsatellite loci. Significant reduction in genetic diversity and significant difference in genetic composition of the seedling lots compared to the seed origin stand were detected. The female and the total effective number of parents were quantified by means of maternity assignment of seedlings and temporal changes in allele frequencies. Extremely low effective maternity numbers were estimated (Nfe ≈\approx 2-4) and estimates accounting for both seed and pollen donors gave also low values (Ne ≈\approx 35-50). These values can be explained by an inappropriate forestry seed harvest strategy limited to a small number of spatially close trees

    Monitoring of drying kinetics evolution and hygrothermal properties of new earth-based materials using climatic chamber simulation

    Get PDF
    This study focuses on the drying kinetics of cob and light-earth layers comprising a hybrid walling system. Volumetric water content sensors are immersed and placed at different positions on the walls of a building to measure the drying kinetics. In addition, an experimental analysis of the effect of temperature, relative humidity (RH), and wind velocity variations on thermal conductivity in a climatic chamber under winter and summer conditions was conducted. The analysis of samples in laboratory aims to investigate the hygrothermal properties of cob and light-earth materials, and their dependency on the aforementioned parameters. The in situ drying kinetics of both materials involves water content reduction and stabilization; however, in the laboratory, although the water content of materials decreases, the drying is incomplete. Which may be due to the limited wind speed. The hydrothermal properties show that open porosity affects water vapor permeability and modifies the RH of cob and light-earth. At 23 °C, when the relative humidity (RH) range was 10–30%, the absorbed water vapor of cob and light earth was 0–2%. However, when the RH is 40–90%, the absorbed water vapor of light earth (2–9%) exceeds that of cob (0.5–2%). Moreover, the response to relative humidity (RH) with regard to the mixing law of components and samples differs. The resistance factor to water vapor diffusion values for cob and light-earth are 12.9 and 8.2, respectively. In this study, the thermal conductivity measurements under summer and winter conditions provide the relationship between the thermal conductivity, density, and water content of cob and light-earth materials

    Earth construction: Field variabilities and laboratory reproducibility

    Get PDF
    Building construction is a major polluting sector. As a result, there is increasing global interest in the development of sustainable building materials with low environmental impact. Earth-based materials are among the materials of interest and building with earth-based materials has thus received a particular renewal of attention. Previous research has focused on the physical characteristics and durability of these materials. The aim of this study is to assess the variability of materials made in-situ and their reproducibility in the laboratory using an automatic normal Proctor machine with different compaction energies. Both cob and light earth were investigated. Cylindrical and prismatic specimens were produced on-site and in the laboratory: cob was made of silt, silty clay, sandy silt, and flax straw; and a separate layer of light earth was made of elastic silt and reed fibres. An experimental program was designed to evaluate the properties of the materials in terms of their water content, density, porosity, compressive strength, and thermal conductivity. The results revealed that the in-situ densities could be reproduced in the laboratory with compaction energies of 0.6 MJ/m3 and 0.2 MJ/m3 for cob and light earth, respectively. These compaction energies will allow the research to produce laboratory specimens that were representative of the materials implemented on-site. Regarding the compressive strength, the values obtained in the laboratory were higher than those of the in-situ specimens. Correction factors of 0.88 and 0.67 for cob and light earth. These values should be applied to calibrate the laboratory results in relation to in-situ. Concerning the thermal conductivity, the values obtained in the laboratory were similar for cob and higher for light earth. A correction factor of 0.87 should be applied to calibrate the laboratory results to those obtained in-situ

    Comparison of the thermal performance between conventional and cob building

    Get PDF
    The appliance of sustainable development approach in building has urged construction industry to adopt proper measurements to protect environment and reduce residential building energy consumption and CO2 emissions. Thus, an increasing interest in alternative building materials has developed including the use of bio-based materials such as cob which is studied in this paper. In the previous work, many experimental and numerical studies have been carried out to characterize thermal behaviour of earth buildings, reduce its thermal conductivity and water content. In this paper, an experimental study is carried out to determine the thermal properties and energy performance of cob building. Cob samples within different soil and fiber contents are studied using an experimental set up instrumented with flux meters and micro-thermocouples in order to evaluate the local heat flux and thermal conductivity during stationary regime. The results are analysed and compared to deduce the performant mixes in terms of thermal behaviour while respecting the French thermal regulation. A static thermal simulation based on RT 2012 calculation method (the official French calculation method for the energy performance of new residential and commercial buildings according to France thermal regulation) is used to compare energy performance between conventional and cob building using the French climate data base

    Risk of venous thromboembolism in people with lung cancer: a cohort study using linked UK healthcare data

    Get PDF
    Background: Venous thromboembolism is a potentially preventable cause of death in people with lung cancer. Identification of those most at risk and high risk periods may provide the opportunity for better targeted intervention. Methods: We conducted a cohort study using the Clinical Practice Research Datalink linked to Hospital Episode Statistics and Cancer Registry data. Our cohort comprised 10,598 people with lung cancer diagnosed between 1997 and 2006 with follow-up continuing to the end of 2010. Cox regression analysis was performed to determine which demographic, tumour and treatment-related factors (time-varying effects of chemotherapy and surgery) independently affected VTE risk. We also determined the effect of a VTE diagnosis on the survival of people with lung cancer. Results: People with lung cancer had an overall VTE incidence of 39.2 per 1000 person years (95% confidence Interval (CI), 35.4-43.5), though rates varied depending on the patient group and treatment course. Independent factors associated with increased VTE risk were: metastatic disease (hazard ratio (HR)=1.9, CI 1.2, 3.0 vs. local disease); adenocarcinoma sub-type (HR =2.0, CI 1.5, 2.7, vs. squamous cell; chemotherapy administration, (HR=2.1, CI 1.4, 3.0 vs. outside chemotherapy courses); and diagnosis via emergency hospital admission (HR=1.7, CI 1.2-2.3 vs. other routes to diagnosis). Patients with VTE had an approximately 50% higher risk of mortality than those without VTE. Conclusions: People with lung cancer have especially high risk of VTE if they have advanced disease, adenocarcinoma, or are undergoing chemotherapy. Presence of VTE is an independent risk factor for death

    Elevated reticulocyte count – a clue to the diagnosis of haemolytic-uraemic syndrome (HUS) associated with gemcitabine therapy for metastatic duodenal papillary carcinoma: a case report

    Get PDF
    In adults, the haemolytic-uraemic syndrome (HUS) is associated with probable causative factors in the minority of all cases. Cytotoxic drugs are one of these potential causative agents. Although metastatic cancer by itself is a recognized risk-factor for the development of HUS, therapy with mitomycin-C, with cis-platinum, and with bleomycin carries a significant, albeit extremely small, risk for the development of HUS, compared with all other cytotoxic drugs. Gemcitabine is a novel cytotoxic drug with promising activity against pancreatic adenocarcinoma. We are reporting on one patient with metastatic duodenal papillary carcinoma developing HUS while on weekly gemcitabine therapy. The presenting features in this patient were non-cardiac pulmonary oedema, renal failure, thrombocytopenia and haemolytic anaemia. The diagnosis of HUS was made on the day of admission of the patient to this institution. Upon aggressive therapy, including one single haemodialysis and five plasmaphereses, the patient recovered uneventfully, with modestly elevated creatinine-values as a remnant of the acute illness. Re-exposure to gemcitabine 6 months after the episode of HUS instituted for progressive carcinoma, thus far has not caused another episode of HUS. © 1999 Cancer Research Campaig
    • 

    corecore