66 research outputs found

    Earth Observations for Global Water Security

    Get PDF
    The combined effects of population growth, increasing demands for water to support agriculture, energy security, and industrial expansion, and the challenges of climate change give rise to an urgent need to carefully monitor and assess trends and variations in water resources. Doing so will ensure that sustainable access to adequate quantities of safe and useable water will serve as a foundation for water security. Both satellite and in situ observations combined with data assimilation and models are needed for effective, integrated monitoring of the water cycle's trends and variability in terms of both quantity and quality. On the basis of a review of existing observational systems, we argue that a new integrated monitoring capability for water security purposes is urgently needed. Furthermore, the components for this capability exist and could be integrated through the cooperation of national observational programmes. The Group on Earth Observations should play a central role in the design, implementation, management and analysis of this system and its products

    Interoperability Between GRDC\u27s Data Holding And The GEOSS Infrastructure

    Full text link
    The Global Runoff Data Centre (GRDC) operates under the auspices of the World Meteorological Organization as an international data centre for hydrological data and information on a global scale. Its primary objective is to support the water and climate related programmes and projects of the United Nations, its specialised agencies, and the scientific research community on global and climate change and integrated water resources management. The Global Runoff Database maintained by the GRDC is a valuable data resource and a subset of its data is contributed to the Global Earth Observation System of Systems’ (GEOSS) freely accessible Data Core. As a partner in the project GEOSS Interoperability for Weather, Ocean and Water (GEOWOW) the GRDC supports the evolving GEOSS in terms of interoperability, standardization and functionality. In the framework of GEOWOW a profile of the OGC Sensor Observation Service Interface Standard 2.0 (SOS) is being developed. This SOS Profile for the Hydrology Domain specifies extensions to the service interface and uses the OGC WaterML 2.0 standard for encoding hydrological time series data. Moreover, technical partners of the GEOWOW project facilitate software implementations of the standardization advancements. Deploying and incorporating these into GRDC’s data holding infrastructure allows for a seamless integration of GRDC’s data provision capabilities into GEOSS. Furthermore, client web applications to visualize time series data provided via an OGC Web Service infrastructure makes it possible to offer additional benefit and allows for accessing and assessing data more easily

    Short-Term Change Detection in Wetlands Using Sentinel-1 Time Series

    Get PDF
    Automated monitoring systems that can capture wetlands’ high spatial and temporal variability are essential for their management. SAR-based change detection approaches offer a great opportunity to enhance our understanding of complex and dynamic ecosystems. We test a recently-developed time series change detection approach (S1-omnibus) using Sentinel-1 imagery of two wetlands with different ecological characteristics; a seasonal isolated wetland in southern Spain and a coastal wetland in the south of France. We test the S1-omnibus method against a commonly-used pairwise comparison of consecutive images to demonstrate its advantages. Additionally, we compare it with a pairwise change detection method using a subset of consecutive Landsat images for the same period of time. The results show how S1-omnibus is capable of capturing in space and time changes produced by water surface dynamics, as well as by agricultural practices, whether they are sudden changes, as well as gradual. S1-omnibus is capable of detecting a wider array of short-term changes than when using consecutive pairs of Sentinel-1 images. When compared to the Landsat-based change detection method, both show an overall good agreement, although certain landscape changes are detected only by either the Landsat-based or the S1-omnibus method. The S1-omnibus method shows a great potential for an automated monitoring of short time changes and accurate delineation of areas of high variability and of slow and gradual changes

    Multitemporal optical and radar metrics for wetland mapping at national level in Albania

    Get PDF
    Wetlands are highly dynamic, with many natural and anthropogenic drivers causing seasonal, periodic or permanent changes in their structure and composition. Thus, it is necessary to use time series of images for accurate classifications and monitoring. We used all available Sentinel-1 and Sentinel-2 images to produce a national wetlands map for Albania. We derived different indices and temporal metrics and investigated their impacts and synergies in terms of mapping accuracy. Best results were achieved when combining Sentinel-1 with Sentinel-2 and its derived indices. We reduced systematic errors and increased the thematic resolution using morphometric characteristics and knowledge-based rules, achieving an overall accuracy of 82%. Results were also validated against field inventories. This methodology can be reproducible to other countries and can be made operational for an integrated planning that considers the food, water, and energy nexus

    The effect of materials, process settings and screw geometry on energy consumption and melt temperature in single screw extrusion

    Get PDF
    YesPolymer extrusion is an energy intensive production process and process energy e ciency has become a key concern in the current industry with the pressure of reducing the global carbon footprint. Here, knowledge of the pattern of energy usage and losses of each component in the plant is highly useful in the process energy optimization. Moreover, it is essential to maintain the melt quality while improving the energy e ciency in polymer processing. In this work, an investigation was made on the total energy consumption, drive motor energy consumption, power factor and the melt temperature profile across the die melt flow (as an indication of the melt thermal quality) of an industrial scale extruder with three di erent screw geometries, three polymer types and wide range of processing conditions (altogether 135 di erent processing situations were observed). This aims to widen the knowledge on process energy and thermal behaviors while exploring possible correlation/s between energy demand and melt quality (in terms of melt temperature fluctuations across the melt flow). The results showed that the level and fluctuations of the extruder’s power factor is particularly dependent upon the material being processed. Moreover, it seems that there is a relation between the level of energy demand of the heaters and the level of melt temperature fluctuations. While the extruder specific energy consumption decreases with increasing screw speed, specific energy consumption of the drive motor may have either increasing or decreasing behavior. Overall, this study provides new insights in a wide range on process energy demand and melt thermal quality in polymer extrusion. Moreover, further research is recommended to establish strong correlation/s between process energy consumption and melt thermal quality which should help to enhance process control and hence the product quality in single screw polymer extrusion

    Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics

    Full text link
    We present measurements of the polarization-transfer components in the 2^2H(e,ep)(\vec e,e'\vec p) reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, pmissp_{\rm miss}, up to 220 MeV/c/c, and Q2=0.65Q^2=0.65 (GeV/c)2({\rm GeV}/c)^2. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components PxP_x and PzP_z and their ratio agree with the theoretical calculations, which use free-proton form factors. Using this, we establish upper limits on possible medium effects that modify the bound proton's form factor ratio GE/GMG_E/G_M at the level of a few percent. We also compare the measured polarization-transfer components and their ratio for 2^2H to those of a free (moving) proton. We find that the universal behavior of 2^2H, 4^4He and 12^{12}C in the double ratio (Px/Pz)A(Px/Pz)1H\frac{(P_x/P_z)^A}{(P_x/P_z)^{^1\rm H}} is maintained in the positive missing-momentum region
    corecore