1,187 research outputs found

    Star Clusters in M31: V. Internal Dynamical Trends: Some Troublesome, Some Reassuring

    Full text link
    We present internal velocity dispersions and precise radial velocities for 200 globular clusters (GCs) in M31 that are derived using new high-resolution spectra from MMT/Hectochelle. Of these, 163 also have King model structural parameters that allow us to estimate their mass-to-light ratios. This is, by far, the largest such dataset available for any galaxy, including the Milky Way. These data strongly confirm earlier suggestions that the optical and near-infrared mass-to-light ratios of M31 GCs decline with increasing metallicity. This behavior is the opposite of that predicted by stellar population models for a standard initial mass function. We show that this phenomenon does not appear to be caused by standard dynamical evolution. A shallower mass function for metal-rich GCs (with dN/dM ~ M^-0.8 to M^-1.3 below one solar mass) can explain the bulk of extant observations. We also observe a consistent, monotonic correlation between mass-to-light ratio and cluster mass. This correlation, in contrast to the correlation with metallicity, is well-explained by the accepted model of dynamical evolution of GCs through mass segregation and the preferential loss of low-mass stars, and these data are among the best available to constrain this process.Comment: AJ in press. 11 pages, 7 figures (not including tables) in emulate forma

    Further Definition of the Mass-Metallicity Relation in Globular Cluster Systems Around Brightest Cluster Galaxies

    Full text link
    We combine the globular cluster data for fifteen Brightest Cluster Galaxies and use this material to trace the mass-metallicity relations (MMR) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor (MP) subpopulation which corresponds to a scaling of heavy-element abundance with cluster mass Z ~ M^(0.30+/-0.05). No trend is seen for the metal-rich (MR) subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the globular cluster populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the colour-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for globular cluster formation in which the MMR is determined by GC self-enrichment during their brief formation period.Comment: 35 pages, 20 figures. Accepted by Astronomical Journal. Complete preprint including high resolution figures available at http://www.physics.mcmaster.ca/~cockcroft/MMRpape

    Limits on thermal variations in a dozen quiescent neutron stars over a decade

    Get PDF
    In quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars, the origin of the thermal X-ray component may be either release of heat from the core of the neutron star, or continuing low-level accretion. In general, heat from the core should be stable on timescales <104<10^4 years, while continuing accretion may produce variations on a range of timescales. While some quiescent neutron stars (e.g. Cen X-4, Aql X-1) have shown variations in their thermal components on a range of timescales, several others, particularly those in globular clusters with no detectable nonthermal hard X-rays (fit with a powerlaw), have shown no measurable variations. Here, we constrain the spectral variations of 12 low mass X-ray binaries in 3 globular clusters over ∼10\sim10 years. We find no evidence of variations in 10 cases, with limits on temperature variations below 11% for the 7 qLMXBs without powerlaw components, and limits on variations below 20% for 3 other qLMXBs that do show non-thermal emission. However, in 2 qLMXBs showing powerlaw components in their spectra (NGC 6440 CX 1 & Terzan 5 CX 12) we find marginal evidence for a 10% decline in temperature, suggesting the presence of continuing low-level accretion. This work adds to the evidence that the thermal X-ray component in quiescent neutron stars without powerlaw components can be explained by heat deposited in the core during outbursts. Finally, we also investigate the correlation between hydrogen column density (NH_H) and optical extinction (AV_V) using our sample and current models of interstellar X-ray absorption, finding NH(cm−2)=(2.81±0.13)×1021AVN_H ({\rm cm}^{-2}) = (2.81\pm0.13)\times10^{21} A_V.Comment: 16 pages, 5 figures, MNRAS, in pres

    Antlia B: A faint dwarf galaxy member of the NGC 3109 association

    Get PDF
    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of ∼\sim72 kpc from NGC 3109 (MVM_{V}∼\sim−-15 mag), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is DD=1.29±\pm0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal poor red giant branch (≳\gtrsim10 Gyr, [Fe/H]∼\sim−-2), and a younger blue population with an age of ∼\sim200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has \ion{H}{1} gas at a velocity of vhelio,HIv_{helio,HI}=376 km s−1^{-1}, confirming the association with NGC 3109 (vheliov_{helio}=403 km s−1^{-1}). The HI gas mass (MHI_{HI}=2.8±\pm0.2×\times105^{5} M⊙_{\odot}), stellar luminosity (MVM_{V}=−-9.7±\pm0.6 mag) and half light radius (rhr_{h}=273±\pm29 pc) are all consistent with the properties of dwarf irregular and dwarf spheroidal galaxies in the Local Volume, and is most similar to the Leo P dwarf galaxy. The discovery of Antlia B is the initial result from a Dark Energy Camera survey for halo substructure and faint dwarf companions to NGC 3109 with the goal of comparing observed substructure with expectations from the Λ\Lambda+Cold Dark Matter model in the sub-Milky Way regime.Comment: 7 pages, 3 figures. Submitted to ApJ

    The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Arabidopsis, INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5), a putative dual-specificity protein phosphatase, is a positive regulator of auxin response. Mutations in <it>IBR5 </it>result in decreased plant height, defective vascular development, increased leaf serration, fewer lateral roots, and resistance to the phytohormones auxin and abscisic acid. However, the pathways through which IBR5 influences auxin responses are not fully understood.</p> <p>Results</p> <p>We analyzed double mutants of <it>ibr5 </it>with other mutants that dampen auxin responses and found that combining <it>ibr5 </it>with an auxin receptor mutant, <it>tir1</it>, enhanced auxin resistance relative to either parent. Like other auxin-response mutants, auxin-responsive reporter accumulation was reduced in <it>ibr5</it>. Unlike other auxin-resistant mutants, the Aux/IAA repressor reporter protein AXR3NT-GUS was not stabilized in <it>ibr5</it>. Similarly, the Aux/IAA repressor IAA28 was less abundant in <it>ibr5 </it>than in wild type. <it>ibr5 </it>defects were not fully rescued by overexpression of a mutant form of IBR5 lacking the catalytic cysteine residue.</p> <p>Conclusion</p> <p>Our genetic and molecular evidence suggests that IBR5 is a phosphatase that promotes auxin responses, including auxin-inducible transcription, differently than the TIR1 auxin receptor and without destabilizing Aux/IAA repressor proteins. Our data are consistent with the possibility that auxin-responsive transcription can be modulated downstream of TIR1-mediated repressor degradation.</p

    Pfleiderer2: identification of a new globular cluster in the Galaxy

    Full text link
    We provide evidence that indicate the star cluster Pfleiderer 2, which is projected in a rich field, as a newly identified Galactic globular cluster. Since it is located in a crowded field, core extraction and decontamination tools were applied to reveal the cluster sequences in B, V and I Color-Magnitude Diagrams (CMDs). The main CMD features of Pfleiderer 2 are a tilted Red Giant Branch, and a red Horizontal Branch, indicating a high metallicity around solar. The reddening is E(B-V)=1.01. The globular cluster is located at a distance from the Sun d⊙_{\odot} = 16±\pm2 kpc. The cluster is located at 2.7 kpc above the Galactic plane and at a distance from the Galactic center of RGC_{\rm GC}=9.7 kpc, which is unusual for a metal-rich globular cluster.Comment: Accepted by The Astronomical Journa

    Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis

    Get PDF
    BACKGROUND: Biomolecular condensates are non-stoichiometric assemblies that are characterized by their capacity to spatially concentrate biomolecules and play a key role in cellular organization. Proteins that drive the formation of biomolecular condensates frequently contain oligomerization domains and intrinsically disordered regions (IDRs), both of which can contribute multivalent interactions that drive higher-order assembly. Our understanding of the relative and temporal contribution of oligomerization domains and IDRs to the material properties of in vivo biomolecular condensates is limited. Similarly, the spatial and temporal dependence of protein oligomeric state inside condensates has been largely unexplored in vivo. METHODS: In this study, we combined quantitative microscopy with number and brightness analysis to investigate the aging, material properties, and protein oligomeric state of biomolecular condensates in vivo. Our work is focused on condensates formed by AUXIN RESPONSE FACTOR 19 (ARF19), a transcription factor integral to the auxin signaling pathway in plants. ARF19 contains a large central glutamine-rich IDR and a C-terminal Phox Bem1 (PB1) oligomerization domain and forms cytoplasmic condensates. RESULTS: Our results reveal that the IDR amino acid composition can influence the morphology and material properties of ARF19 condensates. In contrast the distribution of oligomeric species within condensates appears insensitive to the IDR composition. In addition, we identified a relationship between the abundance of higher- and lower-order oligomers within individual condensates and their apparent fluidity. CONCLUSIONS: IDR amino acid composition affects condensate morphology and material properties. In ARF condensates, altering the amino acid composition of the IDR did not greatly affect the oligomeric state of proteins within the condensate. Video Abstract
    • …
    corecore