30 research outputs found
Miocene Glacial Dynamics Recorded by Variations in Magnetic Properties in the ANDRILL-2A Drill Core
During the 2007 ANtarctic geological DRILLing (ANDRILL) campaign in the Ross Sea, Antarctica, the AND-2A core was recovered through a stratigraphic succession spanning 1,138.54 m of Neogene sedimentary rocks that include an expanded early to middle Miocene sequence. The study reported here focuses on the magnetic properties of the interval from 778.63 m below sea floor (mbsf) to 1,138.54 mbsf, which comprises a time interval spanning 1.5 Myr, from ~18.7 to ~20.2 Ma. We recognize three main pulses of increased input of magnetic materials to the drill site between 778.34–903.06, 950.55–995.78, and 1,040–1,103.96 mbsf. Trends in the magnetic mineral concentration dependent parameters mirror changes in the proportion of sediments derived from McMurdo Volcanic Group rocks. We suggest that these pulses in magnetic mineral concentration reflect changes in sediment transport processes associated with changing glacial conditions at the drill site that included (1) subglacial and grounding zone proximal settings, (2) hemipelagic and neritic conditions with abundant sediment-rich icebergs, and (3) grounding zone-distal environment that was covered by land-fast multiyear sea ice or a fringing ice shelf. The magnetic minerals record preserved in the AND-2A core supports other data that indicate a highly dynamic and variable coastal environment during the early Miocene, where glaciers retreated inland under warm climatic conditions and advanced beyond the drill site across the continental shelf when cold climate prevailed
Preliminary Integrated Chronostratigraphy of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica
We use all available chronostratigraphic constraints – biostratigraphy, magnetostratigraphy,
radioisotopic dates, strontium-isotope stratigraphy, and correlation of compositional and physical properties
to well-dated global or regional records – to construct a preliminary age model for ANDRILL SMS Project’s
AND-2A drillcore (77°45.488’S, 165°16.605’E, 383.57 m water depth). These diverse chronostratigraphic
constraints are consistent with each other and are distributed throughout the 1138.54 m-thick section,
resulting in a well-constrained age model. The sedimentary succession comprises a thick early and middle
Miocene section below 224.82 mbsf and a condensed middle/late Miocene to Recent section above
this. The youngest sediments are Brunhes age (<0.781 Ma), as confirmed by a radioisotopic age of
0.691±0.049 Ma at 10.23 mbsf and the occurrence of sediments that have normal magnetic polarity down
to ~31.1 mbsf, which is interpreted to be the Brunhes/Matuyama reversal (0.781 Ma). The upper section
is punctuated by disconformities resulting from both discontinuous deposition and periods of extensive
erosion typical of sedimentary environments at the margin of a dynamic ice sheet. Additional breaks in
the section may be due to the influence of tectonic processes. The age model incorporates several major
hiatuses but their precise depths are still somewhat uncertain, as there are a large number of erosional
surfaces identified within the stratigraphic section. One or more hiatuses, which represent a total 7 to 8
million years of time missing from the sedimentary record, occur between about 50 mbsf and the base of
Lithostratigraphic Unit (LSU) 3 at 122.86 mbsf. Similarly, between about 145 mbsf and the base of LSU
4 at 224.82 mbsf, one or more hiatuses occur on which another 2 to 3 million years of the sedimentary
record is missing. Support for the presence of these hiatuses comes from a diatom assemblage that
constrains the age of the core from 44 to 50 mbsf to 2.06-2.84 Ma, two radioisotopic dates (11.4 Ma)
and a Sr‑isotope date (11.7 Ma) that indicate the interval from 127 to 145 mbsf was deposited between
11.4 and 11.7 Ma, and three diatom occurrence datums from between 225.38 and 278.55 mbsf that
constrain the age of this upper part of Lithostratigraphic Unit (LSU) 5 to 14.29 - 15.89 Ma. Below the
boundary between LSU 5 and 6 sedimentation was relatively continuous and rapid and the age model is
well-constrained by 9 diatom datums, seven 40Ar-39Ar dates, one Sr-isotope date, and 19 magnetozones.
Even so, short hiatuses (less than a few hundred thousand years) undoubtedly occur but are beyond
the resolution of current chronostratigraphic age constraints. Diatom first and last occurrence datums
provide particularly good age control from the top of LSU 6 down to 771.5 mbsf (in LSU 10), where
the First Occurrence (FO) of Thalassiosira praefraga (18.85 Ma) is observed. The diatom datum ages
are supported by radioisotopic dates of 17.30±0.31 Ma at 640.14 mbsf (in LSU 9) and 18.15±0.35 and
17.93±0.40 Ma for samples from 709.15 and 709.18 mbsf (in LSU 10), respectively, and 18.71±0.33 Ma
for a sample from 831.67 mbsf (in LSU 11). The sediments from 783.69 mbsf to the base of the hole
comprise two thick normal polarity magnetozones that bound a thinner reversed polarity magnetozone
(958.59 - 985.64 mbsf). This polarity sequence most likely encompasses Chrons C5En, C5Er, and C6n
(18.056 - 19.772 Ma or slightly older given uncertainties in this section of the geomagnetic polarity
timescale), but could be also be Chrons C6n, C6r, and C6An.1n (18.748 - 20.213 Ma). Either polarity
sequence is compatible with the 40Ar–39Ar age of 20.01±0.35 Ma obtained from single-grain analyses of
alkali feldspar from a tephra sample from a depth of 1093.02 mbsf, although the younger interpretation
allows a better fit with chronostratigraphic data up-core. Given this age model, the mean sedimentation
rate is about 18 cm/k.y. from the top of LSU 6 to the base of the hole.Published221-2202.2. Laboratorio di paleomagnetismoN/A or not JCRreserve
Impact of COVID-19 pandemic on cardiovascular testing in Asia: the IAEA INCAPS-COVID study
BACKGROUND The coronavirus disease-2019 (COVID-19) pandemic significantly affected management of cardiovascular
disease around the world. The effect of the pandemic on volume of cardiovascular diagnostic procedures is not known.
OBJECTIVES This study sought to evaluate the effects of the early phase of the COVID-19 pandemic on cardiovascular
diagnostic procedures and safety practices in Asia.
METHODS The International Atomic Energy Agency conducted a worldwide survey to assess changes in cardiovascular
procedure volume and safety practices caused by COVID-19. Testing volumes were reported for March 2020 and April
2020 and were compared to those from March 2019. Data from 180 centers across 33 Asian countries were grouped into
4 subregions for comparison.
RESULTS Procedure volumes decreased by 47% from March 2019 to March 2020, showing recovery from March 2020
to April 2020 in Eastern Asia, particularly in China. The majority of centers cancelled outpatient activities and increased
time per study. Practice changes included implementing physical distancing and restricting visitors. Although COVID
testing was not commonly performed, it was conducted in one-third of facilities in Eastern Asia. The most severe reductions
in procedure volumes were observed in lower-income countries, where volumes decreased 81% from March
2019 to April 2020.
CONCLUSIONS The COVID-19 pandemic in Asia caused significant reductions in cardiovascular diagnostic procedures,
particularly in low-income countries. Further studies on effects of COVID-19 on cardiovascular outcomes and changes in care delivery are warranted
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
user centered design approaches and methods for p5 ehealth
As seen throughout this book, eHealth informed by P5 approach gives full recognition to patients' contexts, needs, desires, and personal characteristics. These aspects should not only be considered as cornerstones for technology evaluation, but as fundamental guidelines for design in the first place. This relates to User-Centered Design, that is, any technology/service design where final users influence how the design itself takes place. In other words, eHealth development should be based on research data gathered among final users about their needs and contexts of use, in order to be specifically tailored on final users even before the realization of low-level prototypes. This methodological contribution presents a critical presentation, description, and evaluation of research tools to be employed not to evaluate technology's results and effectiveness, but the specific characteristics of users in order to orient design and development. Such an approach should be considered the "gold standard" of P5 eHealth solutions
Palaeomagnetism of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica
We conducted initial palaeomagnetic studies on cores from site AND-2A (77°45.488’S, 165°16.605’E, ~383.57 metres water depth). A total of 813 samples were collected that span from the top of the section down to the base at 1138.54 metres below sea floor (mbsf). Samples were collected every one or two metres down the core, with paired (pilot) samples being collected about every ten to twenty metres to allow us to assess the demagnetisation behaviour of the samples using either alternating field (AF) or thermal demagnetisation. With the exception of only a few intervals, AF demagnetisation was observed to resolve a characteristic remanent magnetisation (ChRM) as well or better than thermal demagnetisation. Thermal demagnetisation was particularly ineffective in many intervals owing to thermal alteration that was common above 500°C and was evident in some samples even at low temperatures. Above Lithostratigraphic Unit (LSU) 8 (436.18 mbsf), where lithologies are generally more coarse grained than lower in the section, resolving a ChRM is difficult and recent overprints or a drilling overprint are a concern. Within LSU 8 and below, most samples have a ChRM that can be resolved. The ChRM is most likely an original depositional magnetisation throughout most of this lower section, although orthogonaldemagnetisation diagrams contain evidence that normal polarity overprinting affects some intervals. Based on 40Ar/39Ar dates and diatom datums, the magnetozones identified from the base of the hole up to ~266mbsf are consistent with spanning from either Chron C6n (18.748-19.772 Ma) or C6An.1n (20.040-20.213 Ma) up through Chron C5Br (15.160-15.974 Ma). Above this, intervals of constant polarity are isolated within longer stratigraphic intervals of uncertain polarity, making their correlation with the geomagnetic polarity timescale (GPTS) speculative and highly dependent on ages obtained from other dating methods. One exception is a reversed-to-normal polarity transition that occurs at ~31 mbsf and is interpreted to most likely be the Brunhes/Matuyama boundary. The spacing of polarity reversals below 266 mbsf and their correlation with the GPTS indicates that this part of the stratigraphic section was deposited between 15 to 20 Ma at a mean sedimentation rate of about 18 centimetres (cm)/ thousand year (k.y.)
Palaeomagnetism of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica
We conducted initial palaeomagnetic studies on cores from site AND-2A (77°45.488’S,
165°16.605’E, ~383.57 metres water depth). A total of 813 samples were collected that span from the
top of the section down to the base at 1138.54 metres below sea floor (mbsf). Samples were collected
every one or two metres down the core, with paired (pilot) samples being collected about every ten to
twenty metres to allow us to assess the demagnetisation behaviour of the samples using either alternating
field (AF) or thermal demagnetisation. With the exception of only a few intervals, AF demagnetisation
was observed to resolve a characteristic remanent magnetisation (ChRM) as well or better than thermal
demagnetisation. Thermal demagnetisation was particularly ineffective in many intervals owing to thermal
alteration that was common above 500°C and was evident in some samples even at low temperatures.
Above Lithostratigraphic Unit (LSU) 8 (436.18 mbsf), where lithologies are generally more coarse grained
than lower in the section, resolving a ChRM is difficult and recent overprints or a drilling overprint are a
concern. Within LSU 8 and below, most samples have a ChRM that can be resolved. The ChRM is most
likely an original depositional magnetisation throughout most of this lower section, although orthogonal
demagnetisation diagrams contain evidence that normal polarity overprinting affects some intervals. Based on
40Ar/39Ar dates and diatom datums, the magnetozones identified from the base of the hole up to ~266mbsf
are consistent with spanning from either Chron C6n (18.748-19.772 Ma) or C6An.1n (20.040-20.213 Ma)
up through Chron C5Br (15.160-15.974 Ma). Above this, intervals of constant polarity are isolated within
longer stratigraphic intervals of uncertain polarity, making their correlation with the geomagnetic polarity
timescale (GPTS) speculative and highly dependent on ages obtained from other dating methods. One
exception is a reversed-to-normal polarity transition that occurs at ~31 mbsf and is interpreted to most
likely be the Brunhes/Matuyama boundary. The spacing of polarity reversals below 266 mbsf and their
correlation with the GPTS indicates that this part of the stratigraphic section was deposited between 15
to 20 Ma at a mean sedimentation rate of about 18 centimetres (cm)/ thousand year (k.y.).Published193-2102.2. Laboratorio di paleomagnetismoN/A or not JCRreserve
Palaeomagnetism of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica
We conducted initial palaeomagnetic studies on cores from site AND-2A (77°45.488’S,
165°16.605’E, ~383.57 metres water depth). A total of 813 samples were collected that span from the
top of the section down to the base at 1138.54 metres below sea floor (mbsf). Samples were collected
every one or two metres down the core, with paired (pilot) samples being collected about every ten to
twenty metres to allow us to assess the demagnetisation behaviour of the samples using either alternating
field (AF) or thermal demagnetisation. With the exception of only a few intervals, AF demagnetisation
was observed to resolve a characteristic remanent magnetisation (ChRM) as well or better than thermal
demagnetisation. Thermal demagnetisation was particularly ineffective in many intervals owing to thermal
alteration that was common above 500°C and was evident in some samples even at low temperatures.
Above Lithostratigraphic Unit (LSU) 8 (436.18 mbsf), where lithologies are generally more coarse grained
than lower in the section, resolving a ChRM is difficult and recent overprints or a drilling overprint are a
concern. Within LSU 8 and below, most samples have a ChRM that can be resolved. The ChRM is most
likely an original depositional magnetisation throughout most of this lower section, although orthogonal
demagnetisation diagrams contain evidence that normal polarity overprinting affects some intervals. Based on
40Ar/39Ar dates and diatom datums, the magnetozones identified from the base of the hole up to ~266mbsf
are consistent with spanning from either Chron C6n (18.748-19.772 Ma) or C6An.1n (20.040-20.213 Ma)
up through Chron C5Br (15.160-15.974 Ma). Above this, intervals of constant polarity are isolated within
longer stratigraphic intervals of uncertain polarity, making their correlation with the geomagnetic polarity
timescale (GPTS) speculative and highly dependent on ages obtained from other dating methods. One
exception is a reversed-to-normal polarity transition that occurs at ~31 mbsf and is interpreted to most
likely be the Brunhes/Matuyama boundary. The spacing of polarity reversals below 266 mbsf and their
correlation with the GPTS indicates that this part of the stratigraphic section was deposited between 15
to 20 Ma at a mean sedimentation rate of about 18 centimetres (cm)/ thousand year (k.y.).Published193-2102.2. Laboratorio di paleomagnetismoN/A or not JCRreserve
Preliminary Integrated Chronostratigraphy of the AND-2A Core, ANDRILL Southern McMurdo Sound Project, Antarctica
We use all available chronostratigraphic constraints – biostratigraphy, magnetostratigraphy, radioisotopic dates, strontium-isotope stratigraphy, and correlation of compositional and physical properties to well-dated global or regional records – to construct a preliminary age model for ANDRILL SMS Project’s AND-2A drillcore (77°45.488’S, 165°16.605’E, 383.57 m water depth). These diverse chronostratigraphic constraints are consistent with each other and are distributed throughout the 1138.54 m-thick section, resulting in a well-constrained age model. The sedimentary succession comprises a thick early and middle Miocene section below 224.82 mbsf and a condensed middle/late Miocene to Recent section above this. The youngest sediments are Brunhes age (\u3c0.781 Ma), as confirmed by a radioisotopic age of 0.691±0.049 Ma at 10.23 mbsf and the occurrence of sediments that have normal magnetic polarity down to ~31.1 mbsf, which is interpreted to be the Brunhes/Matuyama reversal (0.781 Ma). The upper section is punctuated by disconformities resulting from both discontinuous deposition and periods of extensive erosion typical of sedimentary environments at the margin of a dynamic ice sheet. Additional breaks in the section may be due to the influence of tectonic processes. The age model incorporates several major hiatuses but their precise depths are still somewhat uncertain, as there are a large number of erosional surfaces identified within the stratigraphic section. One or more hiatuses, which represent a total 7 to 8 million years of time missing from the sedimentary record, occur between about 50 mbsf and the base of Lithostratigraphic Unit (LSU) 3 at 122.86 mbsf. Similarly, between about 145 mbsf and the base of LSU 4 at 224.82 mbsf, one or more hiatuses occur on which another 2 to 3 million years of the sedimentary record is missing. Support for the presence of these hiatuses comes from a diatom assemblage that constrains the age of the core from 44 to 50 mbsf to 2.06-2.84 Ma, two radioisotopic dates (11.4 Ma) and a Sr‑isotope date (11.7 Ma) that indicate the interval from 127 to 145 mbsf was deposited between 11.4 and 11.7 Ma, and three diatom occurrence datums from between 225.38 and 278.55 mbsf that constrain the age of this upper part of Lithostratigraphic Unit (LSU) 5 to 14.29 - 15.89 Ma. Below the boundary between LSU 5 and 6 sedimentation was relatively continuous and rapid and the age model is well-constrained by 9 diatom datums, seven 40Ar-39Ar dates, one Sr-isotope date, and 19 magnetozones. Even so, short hiatuses (less than a few hundred thousand years) undoubtedly occur but are beyond the resolution of current chronostratigraphic age constraints. Diatom first and last occurrence datums provide particularly good age control from the top of LSU 6 down to 771.5 mbsf (in LSU 10), where the First Occurrence (FO) of Thalassiosira praefraga (18.85 Ma) is observed. The diatom datum ages are supported by radioisotopic dates of 17.30±0.31 Ma at 640.14 mbsf (in LSU 9) and 18.15±0.35 and 17.93±0.40 Ma for samples from 709.15 and 709.18 mbsf (in LSU 10), respectively, and 18.71±0.33 Ma for a sample from 831.67 mbsf (in LSU 11). The sediments from 783.69 mbsf to the base of the hole comprise two thick normal polarity magnetozones that bound a thinner reversed polarity magnetozone (958.59 - 985.64 mbsf). This polarity sequence most likely encompasses Chrons C5En, C5Er, and C6n (18.056 - 19.772 Ma or slightly older given uncertainties in this section of the geomagnetic polarity timescale), but could be also be Chrons C6n, C6r, and C6An.1n (18.748 - 20.213 Ma). Either polarity sequence is compatible with the 40Ar–39Ar age of 20.01±0.35 Ma obtained from single-grain analyses of alkali feldspar from a tephra sample from a depth of 1093.02 mbsf, although the younger interpretation allows a better fit with chronostratigraphic data up-core. Given this age model, the mean sedimentation rate is about 18 cm/k.y. from the top of LSU 6 to the base of the hole
