26 research outputs found

    Intra-tumour heterogeneity is one of the main sources of inter-observer variation in scoring stromal tumour infiltrating lymphocytes in triple negative breast cancer

    Get PDF
    Stromal tumour infiltrating lymphocytes (sTILs) are a strong prognostic marker in triple negative breast cancer (TNBC). Consistency scoring sTILs is good and was excellent when an internet-based scoring aid developed by the TIL-WG was used to score cases in a reproducibility study. This study aimed to evaluate the reproducibility of sTILs assessment using this scoring aid in cases from routine practice and to explore the potential of the tool to overcome variability in scoring. Twenty-three breast pathologists scored sTILs in digitized slides of 49 TNBC biopsies using the scoring aid. Subsequently, fields of view (FOV) from each case were selected by one pathologist and scored by the group using the tool. Inter-observer agreement was good for absolute sTILs (ICC 0.634, 95% CI 0.539–0.735, p < 0.001) but was poor to fair using binary cutpoints. sTILs heterogeneity was the main contributor to disagreement. When pathologists scored the same FOV from each case, inter-observer agreement was excellent for absolute sTILs (ICC 0.798, 95% CI 0.727–0.864, p < 0.001) and good for the 20% (ICC 0.657, 95% CI 0.561–0.756, p < 0.001) and 40% (ICC 0.644, 95% CI 0.546–0.745, p < 0.001) cutpoints. However, there was a wide range of scores for many cases. Reproducibility scoring sTILs is good when the scoring aid is used. Heterogeneity is the main contributor to variance and will need to be overcome for analytic validity to be achieved

    ONEST (Observers Needed to Evaluate Subjective Tests) Analysis of Stromal Tumour-Infiltrating Lymphocytes (sTILs) in Breast Cancer and Its Limitations

    Get PDF
    Simple Summary Tumour-infiltrating lymphocytes (TILs) reflect the host's response against tumours. TILs have a strong prognostic effect in the so-called triple-negative (oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 negative) subset of breast cancers and predict a better response when primary systemic (neoadjuvant) treatment is administered. Although they are easy to assess, their quantitative assessment is subject to some inter-observer variation. ONEST (Observers Needed to Evaluate Subjective Tests) is a new way of analysing inter-observer variability and helps in estimating the number of observers required for a more reliable estimation of this phenomenon. This aspect of reproducibility for TILs has not been explored previously. Our analysis suggests that between six and nine pathologists can give a good approximation of inter-observer agreement in TIL assessments. Tumour-infiltrating lymphocytes (TILs) reflect antitumour immunity. Their evaluation of histopathology specimens is influenced by several factors and is subject to issues of reproducibility. ONEST (Observers Needed to Evaluate Subjective Tests) helps in determining the number of observers that would be sufficient for the reliable estimation of inter-observer agreement of TIL categorisation. This has not been explored previously in relation to TILs. ONEST analyses, using an open-source software developed by the first author, were performed on TIL quantification in breast cancers taken from two previous studies. These were one reproducibility study involving 49 breast cancers, 23 in the first circulation and 14 pathologists in the second circulation, and one study involving 100 cases and 9 pathologists. In addition to the estimates of the number of observers required, other factors influencing the results of ONEST were examined. The analyses reveal that between six and nine observers (range 2-11) are most commonly needed to give a robust estimate of reproducibility. In addition, the number and experience of observers, the distribution of values around or away from the extremes, and outliers in the classification also influence the results. Due to the simplicity and the potentially relevant information it may give, we propose ONEST to be a part of new reproducibility analyses

    The path to a better biomarker: Application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice

    Get PDF
    Immune checkpoint inhibitor therapies targeting PD-1/PD-L1 are now the standard of care in oncology across several hematologic and solid tumor types, including triple negative breast cancer (TNBC). Patients with metastatic or locally advanced TNBC with PD-L1 expression on immune cells occupying 651% of tumor area demonstrated survival benefit with the addition of atezolizumab to nab-paclitaxel. However, concerns regarding variability between immunohistochemical PD-L1 assay performance and inter-reader reproducibility have been raised. High tumor-infiltrating lymphocytes (TILs) have also been associated with response to PD-1/PD-L1 inhibitors in patients with breast cancer (BC). TILs can be easily assessed on hematoxylin and eosin\u2013stained slides and have shown reliable inter-reader reproducibility. As an established prognostic factor in early stage TNBC, TILs are soon anticipated to be reported in daily practice in many pathology laboratories worldwide. Because TILs and PD-L1 are parts of an immunological spectrum in BC, we propose the systematic implementation of combined PD-L1 and TIL analyses as a more comprehensive immuno-oncological biomarker for patient selection for PD-1/PD-L1 inhibition-based therapy in patients with BC. Although practical and regulatory considerations differ by jurisdiction, the pathology community has the responsibility to patients to implement assays that lead to optimal patient selection. We propose herewith a risk-management framework that may help mitigate the risks of suboptimal patient selection for immuno-therapeutic approaches in clinical trials and daily practice based on combined TILs/PD-L1 assessment in BC. \ua9 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC
    corecore