66 research outputs found

    Understanding the impact of antibiotic therapies on the respiratory tract resistome: A novel pooled-template metagenomic sequencing strategy

    Get PDF
    Determining the effects of antimicrobial therapies on airway microbiology at a population-level is essential. Such analysis allows, for example, surveillance of antibiotic-induced changes in pathogen prevalence, the emergence and spread of antibiotic resistance, and the transmission of multi-resistant organisms. However, current analytical strategies for understanding these processes are limited. Culture- and PCR-based assays for specific microbes require the a priori selection of targets, while antibiotic sensitivity testing typically provides no insight into either the molecular basis of resistance, or the carriage of resistance determinants by the wider commensal microbiota. Shotgun metagenomic sequencing provides an alternative approach that allows the microbial composition of clinical samples to be described in detail, including the prevalence of resistance genes and virulence traits. While highly informative, the application of metagenomics to large patient cohorts can be prohibitively expensive. Using sputum samples from a randomised placebo-controlled trial of erythromycin in adults with bronchiectasis, we describe a novel, cost-effective strategy for screening patient cohorts for changes in resistance gene prevalence. By combining metagenomic screening of pooled DNA extracts with validatory quantitative PCR-based analysis of candidate markers in individual samples, we identify population-level changes in the relative abundance of specific macrolide resistance genes. This approach has the potential to provide an important adjunct to current analytical strategies, particularly within the context of antimicrobial clinical trials

    The shear viscosity of carbon fibre suspension and its application for fibre length measurement

    Get PDF
    The viscosity of short carbon fibre suspensions in glycerol aqueous solution was measured using a bespoke vane-in-cup viscometer, where the carbon fibre has an aspect ratio from 450 to 2209. In the semi-concentrated regime, nL3 ranging from 20 to 4400, the suspensions demonstrated strong shear-thinning characteristics particularly at higher concentrations. The shear-thinning characteristic is strongly related to the crowding factor proposed by Kerekes, indicating that non-hydrodynamic interactions occur in the suspensions. The influence of fibre bending on viscosity emerges when the bending ratio is lower than 0.0028. An empirical model based on transient network formation and rupture was proposed and used to correlate the relative viscosity with fibre concentration nL3 and shear rate. Based on the model, a viscosity method is established to analyse the fibre length by measuring the viscosity of the fibre suspension using a bespoke vane-in-cup viscometer

    Protective Efficacy of BCG Overexpressing an L,D-Transpeptidase against M. tuberculosis Infection

    Get PDF
    Background: M. bovis Bacille Calmette-Guérin (BCG), currently the only available vaccine against tuberculosis (TB), fails to adequately protect individuals from active and latent TB infection. New vaccines are desperately needed to decrease the worldwide burden of TB. Methods and Findings: We created a recombinant strain of BCG that overproduces an L,D-transpeptidase in order to alter the bacterial peptidoglycan layer and consequently increase the ability of this immunogen to protect against virulent M. tuberculosis (Mtb). We demonstrate that this novel recombinant BCG protects mice against virulent Mtb at least as well as control BCG, as measured by its ability to reduce bacterial burden in lungs and spleen, reduce lung histopathology, and prolong survival. A nutrient starved recombinant BCG preparation, while offering comparable protection, elicited a response characterized by elevated levels of select Th1 cytokines. Conclusions: Recombinant BCG overexpressing a L,D-transpeptidase that is nutrient starved elicits a stronger Th1 type response and is at least as protective as parent BCG. Results from this study suggest that nutrient starvation treatment of live BCG vaccines should be further investigated as a way to increase host induction of Th-1 related cytokines in the development of experimental anti-TB vaccines

    Utility of In Vivo Transcription Profiling for Identifying Pseudomonas aeruginosa Genes Needed for Gastrointestinal Colonization and Dissemination

    Get PDF
    Microarray analysis of Pseudomonas aeruginosa mRNA transcripts expressed in vivo during animal infection has not been previously used to investigate potential virulence factors needed in this setting. We compared mRNA expression in bacterial cells recovered from the gastrointestinal (GI) tracts of P. aeruginosa-colonized mice to that of P. aeruginosa in the drinking water used to colonize the mice. Genes associated with biofilm formation and type III secretion (T3SS) had markedly increased expression in the GI tract. A non-redundant transposon library in P. aeruginosa strain PA14 was used to test mutants in genes identified as having increased transcription during in vivo colonization. All of the Tn-library mutants in biofilm-associated genes had an attenuated ability to form biofilms in vitro, but there were no significant differences in GI colonization and dissemination between these mutants and WT P. aeruginosa PA14. To evaluate T3SS factors, we tested GI colonization and neutropenia-induced dissemination of both deletional (PAO1 and PAK) and insertional (PA14) mutants in four genes in the P. aeruginosa T3SS, exoS or exoU, exoT, and popB. There were no significant differences in GI colonization among these mutant strains and their WT counterparts, whereas rates of survival following dissemination were significantly decreased in mice infected by the T3SS mutant strains. However, there was a variable, strain-dependent effect on overall survival between parental and T3SS mutants. Thus, increased transcription of genes during in vivo murine GI colonization is not predictive of an essential role for the gene product in either colonization or overall survival following induction of neutropenia

    Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats

    Get PDF
    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.info:eu-repo/semantics/publishedVersio

    Metabolic Network for the Biosynthesis of Intra- and Extracellular alpha-Glucans Required for Virulence of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis synthesizes intra- and extracellular alpha-glucans that were believed to originate from separate pathways. The extracellular glucose polymer is the main constituent of the mycobacterial capsule that is thought to be involved in immune evasion and virulence. However, the role of the alpha-glucan capsule in pathogenesis has remained enigmatic due to an incomplete understanding of alpha-glucan biosynthetic pathways preventing the generation of capsule-deficient mutants. Three separate and potentially redundant pathways had been implicated in alpha-glucan biosynthesis in mycobacteria: the GlgC-GlgA, the Rv3032 and the TreS-Pep2-GlgE pathways. We now show that alpha-glucan in mycobacteria is exclusively assembled intracellularly utilizing the building block alpha-maltose-1-phosphate as the substrate for the maltosyltransferase GlgE, with subsequent branching of the polymer by the branching enzyme GlgB. Some alpha-glucan is exported to form the alpha-glucan capsule. There is an unexpected convergence of the TreS-Pep2 and GlgC-GlgA pathways that both generate alpha-maltose-1-phosphate. While the TreS-Pep2 route from trehalose was already known, we have now established that GlgA forms this phosphosugar from ADP-glucose and glucose 1-phosphate 1000-fold more efficiently than its hitherto described glycogen synthase activity. The two routes are connected by the common precursor ADPglucose, allowing compensatory flux from one route to the other. Having elucidated this unexpected configuration of the metabolic pathways underlying alpha-glucan biosynthesis in mycobacteria, an M. tuberculosis double mutant devoid of alpha-glucan could be constructed, showing a direct link between the GlgE pathway, alpha-glucan biosynthesis and virulence in a mouse infection model

    Finding New Genes for Non-Syndromic Hearing Loss through an In Silico Prioritization Study

    Get PDF
    At present, 51 genes are already known to be responsible for Non-Syndromic hereditary Hearing Loss (NSHL), but the knowledge of 121 NSHL-linked chromosomal regions brings to the hypothesis that a number of disease genes have still to be uncovered. To help scientists to find new NSHL genes, we built a gene-scoring system, integrating Gene Ontology, NCBI Gene and Map Viewer databases, which prioritizes the candidate genes according to their probability to cause NSHL. We defined a set of candidates and measured their functional similarity with respect to the disease gene set, computing a score () that relies on the assumption that functionally related genes might contribute to the same (disease) phenotype. A Kolmogorov-Smirnov test, comparing the pair-wise distribution on the disease gene set with the distribution on the remaining human genes, provided a statistical assessment of this assumption. We found at a p-value that the former pair-wise is greater than the latter, justifying a prioritization strategy based on the functional similarity of candidate genes respect to the disease gene set. A cross-validation test measured to what extent the ranking for NSHL is different from a random ordering: adding 15% of the disease genes to the candidate gene set, the ranking of the disease genes in the first eight positions resulted statistically different from a hypergeometric distribution with a p-value and a power. The twenty top-scored genes were finally examined to evaluate their possible involvement in NSHL. We found that half of them are known to be expressed in human inner ear or cochlea and are mainly involved in remodeling and organization of actin formation and maintenance of the cilia and the endocochlear potential. These findings strongly indicate that our metric was able to suggest excellent NSHL candidates to be screened in patients and controls for causative mutations

    Studies of B_{s2}^{*} (5840)⁰ and B_{s1} (5830)⁰ mesons including the observation of the B_{s2}^{*} (5840)⁰ → B⁰K_{s}^{0} decay in proton-proton collisions at √s = 8 TeV

    Get PDF
    Measurements of B_{s2}^{*} (5840)⁰ and B_{s1} (5840)⁰ mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of 19.6 fb⁻¹, collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV. The analysis studies P-wave B_{s}^{0} meson decays into B^{(*)}⁺K⁻ and B^{(*)}⁰K_{s}^{0}, where the B⁺ and B⁰ mesons are identified using the decays B⁺ → J/φK⁺ and B⁰ → J/φK* (892)⁰. The masses of the P-wave B_{s}^{0} meson states are measured and the natural width of the B_{*}^{s2} (5840)⁰ state is determined. The first measurement of the mass difference between the charged and neutral B* mesons is also presented. The B_{*}^{s2} (5840)⁰ decay to B⁰K_{s}^{0} is observed, together with a measurement of its branching fraction relative to the B_{s2}^{*} (5840)⁰ → B⁺K⁻ decay
    corecore