159 research outputs found

    SHMT1 and SHMT2 Are Functionally Redundant in Nuclear De novo Thymidylate Biosynthesis

    Get PDF
    The three enzymes that constitute the de novo thymidylate synthesis pathway in mammals, cytoplasmic serine hydroxymethyltransferase (SHMT1), thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR) undergo sumoylation and nuclear import during S-phase. In this study, we demonstrate that purified intact mouse liver nuclei convert dUMP to dTMP in the presence of NADPH and serine. Neither nuclear extracts nor intact nuclei exposed to aminomethylphosphonate, a SHMT inhibitor, exhibit thymidylate synthesis activity. Nuclei isolated from Shmt1−/− mouse livers retained 25% of thymidylate synthesis activity exhibited by nuclei isolated from wild type mice. This residual activity was due to the presence of a cytoplasmic/nuclear isozyme of SHMT encoded by Shmt2. Shmt2 is shown to encode two transcripts, one which encodes a protein that localizes exclusively to the mitochondria (SHMT2), and a second transcript that lacks exon 1 and encodes a protein that localizes to the cytoplasm and nucleus during S-phase (SHMT2α). The ability of Shmt2 to encode a cytoplasmic isozyme of SHMT may account for the viability of Shmt1−/− mice and provide redundancy that permitted the expansion of the human SHMT1 L474F polymorphism that impairs SHMT1 sumoylation and nuclear translocation

    Mthfs is an Essential Gene in Mice and a Component of the Purinosome

    Get PDF
    Tetrahydrofolates (THF) are a family of cofactors that function as one-carbon donors in folate-dependent one-carbon metabolism, a metabolic network required for the de novo synthesis of purines, thymidylate, and for the remethylation of homocysteine to methionine in the cytoplasm. 5-FormylTHF is not a cofactor in one-carbon metabolism, but serves as a storage form of THF cofactors. 5-formylTHF is mobilized back into the THF cofactor pool by methenyltetrahydrofolate synthetase (MTHFS), which catalyzes the irreversible and ATP-dependent conversion 5-formyltetrahydrofolate to 5,10-methenyltetrahydrofolate. Mthfs is not an essential gene in Arabidopsis, but MTHFS expression is elevated in animal tumors, enhances de novo purine synthesis, confers partial resistance to antifolate purine synthesis inhibitors and increases rates of folate catabolism in mammalian cell cultures. However, the mechanisms underlying these effects of MTHFS expression have yet to be established. The purpose of this study was to investigate the role and essentiality of MTHFS in mice. Mthfs was disrupted through the insertion of a gene trap vector between exons 1 and 2. Mthfsgt/+ mice were fertile and viable. No Mthfsgt/gt embryos were recovered from Mthfsgt/+ intercrosses, indicating Mthfs is an essential gene in mice. Tissue MTHFS protein levels are decreased in both Mthfsgt/+ and Mthfs+/+ mice placed on a folate and choline deficient diet, and mouse embryonic fibroblasts from Mthfsgt/+ embryos exhibit decreased capacity for de novo purine synthesis without impairment in de novo thymidylate synthesis. MTHFS was shown to co-localize with two enzymes of the de novo purine synthesis pathway in HeLa cells in a cell cycle-dependent manner, and to be modified by the small ubiquitin-like modifier (SUMO) protein. Mutation of the consensus SUMO modification sites on MTHFS eliminated co-localization of MTHFS with the de novo purine biosynthesis pathway under purine-deficient conditions. The results from this study indicate that MTHFS enhances purine biosynthesis by delivering 10-formylTHF to the purinosome in a SUMO-dependent fashion

    Primary structure and tetrahydropteroylglutamate binding site of rabbit liver cytosolic 5,10-methenyltetrahydrofolate synthetase.

    Get PDF
    The primary sequence of 5,10-methenyltetrahydrofolate synthetase from rabbit liver was determined by amino acid sequencing of the purified enzyme. The enzyme contains 201 amino acid residues with a predicted mass of 22,779 Da. The enzyme is located in the cytosolic fraction of liver homogenates. Carbodiimide-activated 5-formyltetrahydropteroylmonoglutamate and the pentaglutamate form of the substrate both irreversibly inactivate the enzyme by forming a covalent bond to Lys-18. Non-activated 5-formyltetrahydropteroylpentaglutamate protected against this inactivation. Substrate specificity studies showed that increasing the number of glutamate residues from zero to five on 5-formyltetrahydropteroate results in a 2 order of magnitude increase in the affinity of the substrate for the enzyme but only a 3-fold increase in the value of Vmax

    A hybrid stochastic model of folate-mediated one-carbon metabolism: Effect of the common C677T MTHFR variant on the novo thymidylate biosynthesis

    Get PDF
    Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA

    Estimating HIV Incidence among Adults in Kenya and Uganda: A Systematic Comparison of Multiple Methods

    Get PDF
    CITATION: Kim, A. A. et al. 2011. Estimating HIV incidence among adults in Kenya and Uganda : a systematic comparison of multiple methods. PLos ONE, 6(3): e17535, doi:10.1371/journal.pone.0017535.The original publication is available at http://journals.plos.org/plosoneBackground: Several approaches have been used for measuring HIV incidence in large areas, yet each presents specific challenges in incidence estimation. Methodology/Principal Findings: We present a comparison of incidence estimates for Kenya and Uganda using multiple methods: 1) Epidemic Projections Package (EPP) and Spectrum models fitted to HIV prevalence from antenatal clinics (ANC) and national population-based surveys (NPS) in Kenya (2003, 2007) and Uganda (2004/2005); 2) a survey-derived model to infer age-specific incidence between two sequential NPS; 3) an assay-derived measurement in NPS using the BED IgG capture enzyme immunoassay, adjusted for misclassification using a locally derived false-recent rate (FRR) for the assay; (4) community cohorts in Uganda; (5) prevalence trends in young ANC attendees. EPP/Spectrum-derived and survey-derived modeled estimates were similar: 0.67 [uncertainty range: 0.60, 0.74] and 0.6 [confidence interval: (CI) 0.4, 0.9], respectively, for Uganda (2005) and 0.72 [uncertainty range: 0.70, 0.74] and 0.7 [CI 0.3, 1.1], respectively, for Kenya (2007). Using a local FRR, assay-derived incidence estimates were 0.3 [CI 0.0, 0.9] for Uganda (2004/2005) and 0.6 [CI 0, 1.3] for Kenya (2007). Incidence trends were similar for all methods for both Uganda and Kenya. Conclusions/Significance: Triangulation of methods is recommended to determine best-supported estimates of incidence to guide programs. Assay-derived incidence estimates are sensitive to the level of the assay's FRR, and uncertainty around high FRRs can significantly impact the validity of the estimate. Systematic evaluations of new and existing incidence assays are needed to the study the level, distribution, and determinants of the FRR to guide whether incidence assays can produce reliable estimates of national HIV incidence.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017535Publisher's versio

    Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study

    Get PDF
    BACKGROUND: Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease. METHODS: 330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models. RESULTS: Using a nominal P 64 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified. CONCLUSIONS: No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val), is predictive of cardiovascular disease biomarkers

    Dynamic and volumetric variables reliably predict fluid responsiveness in a porcine model with pleural effusion

    Get PDF
    Background: The ability of stroke volume variation (SVV), pulse pressure variation (PPV) and global end-diastolic volume (GEDV) for prediction of fluid responsiveness in presence of pleural effusion is unknown. The aim of the present study was to challenge the ability of SVV, PPV and GEDV to predict fluid responsiveness in a porcine model with pleural effusions. Methods: Pigs were studied at baseline and after fluid loading with 8 ml kg−1 6% hydroxyethyl starch. After withdrawal of 8 ml kg−1 blood and induction of pleural effusion up to 50 ml kg−1 on either side, measurements at baseline and after fluid loading were repeated. Cardiac output, stroke volume, central venous pressure (CVP) and pulmonary occlusion pressure (PAOP) were obtained by pulmonary thermodilution, whereas GEDV was determined by transpulmonary thermodilution. SVV and PPV were monitored continuously by pulse contour analysis. Results: Pleural effusion was associated with significant changes in lung compliance, peak airway pressure and stroke volume in both responders and non-responders. At baseline, SVV, PPV and GEDV reliably predicted fluid responsiveness (area under the curve 0.85 (p<0.001), 0.88 (p<0.001), 0.77 (p = 0.007). After induction of pleural effusion the ability of SVV, PPV and GEDV to predict fluid responsiveness was well preserved and also PAOP was predictive. Threshold values for SVV and PPV increased in presence of pleural effusion. Conclusions: In this porcine model, bilateral pleural effusion did not affect the ability of SVV, PPV and GEDV to predict fluid responsiveness

    High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals.</p> <p>Results</p> <p>We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (<it>Tbc1d14</it>, <it>Nol14</it>, <it>Tyms</it>, <it>Cad</it>, <it>Fbxl5</it>, <it>Haus3</it>), and mutations in genes we or others previously reported (<it>Tapt1</it>, <it>Rest</it>, <it>Ugdh</it>, <it>Paxip1</it>, <it>Hmx1, Otoe, Nsun7</it>). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in <it>Tbc1d14 </it>provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis.</p> <p>Conclusion</p> <p>This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.</p

    Returning home: forced conscription, reintegration, and mental health status of former abductees of the Lord's Resistance Army in northern Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the late 1980s, the Lord's Resistance Army (LRA), a spiritualist rebel group in northern Uganda, has killed and mutilated thousands of civilians and abducted an estimated 52,000 to 75,000 people to serve as soldiers, porters, and sex slaves for its commanders. This study examines the types of violence to which former abductees have been exposed and the extent to which these acts have affected their psychological well-being.</p> <p>Methods</p> <p>This is a cross-sectional study of 2,875 individuals selected through a multi-stage stratified cluster sampling design conducted in 8 districts of northern Uganda. Multivariate logistic regressions were performed with symptoms for Post-traumatic Stress Disorder (PTSD) and depression as the main outcome measures.</p> <p>Results</p> <p>One-third of the respondents (33%) self-reported having experienced abduction (49% among the Acholi, the largest tribal group in northern Uganda). Over half (56%) of all the respondents and over two-thirds of those who experienced abduction met the criteria for symptoms of post-traumatic stress disorder (PTSD). Multivariate analysis shows that several factors increased the risk of former LRA abductees developing symptoms of PTSD. These factors included gender (females were more susceptible than males), being a member of the Acholi ethnic group, participating in or witnessing a cumulative number of traumatic events, and encountering difficulties re-integrating into communities after abduction. Factors associated with increased risk of meeting criteria for symptoms of depression included older age of males at the time of abduction, lower score on social relationship scale, high incidence of general traumatic event exposure, high incidence of forced acts of violence, and problems reintegrating into communities after abduction.</p> <p>Conclusion</p> <p>Abduction and forced conscription of civilians has affected the psychological well-being of a significant number of northern Ugandans. The sources of psychological trauma are multiple, ranging from witnessing to being forced to commit violent acts, and compounded by prolonged exposure to violence, often for months or years. Community-based mental health care services and reintegration programs are needed to facilitate the reintegration of former abductees back into their communities.</p
    corecore