836 research outputs found

    Identification of ambiguities in the 1994 chronic fatigue syndrome research case definition and recommendations for resolution

    Get PDF
    BACKGROUND: A recent article by Reeves et al. on the identification and resolution of ambiguities in the 1994 chronic fatigue syndrome (CFS) research case definition recommended the Checklist Individual Strength, the Chalder Fatigue Scale, and the Krupp Fatigue Severity Scale for evaluating fatigue in CFS studies. To be able to discriminate between various levels of severe fatigue, extreme scoring on the individual items of these questionnaires must not occur too often. METHODS: We derived an expression that allows us to compute a lower bound for the number of items with the maximum item score for a given study from the reported mean scale score, the number of reported subjects, and the properties of the fatigue rating scale. Several CFS studies that used the recommended fatigue rating scales were selected from literature and analyzed to verify whether abundant extreme scoring had occurred. RESULTS: Extreme scoring occurred on a large number of the items for all three recommended fatigue rating scales across several studies. The percentage of items with the maximum score exceeded 40% in several cases. The amount of extreme scoring for a certain scale varied from one study to another, which suggests heterogeneity in the selected subjects across studies. CONCLUSION: Because all three instruments easily reach the extreme ends of their scales on a large number of the individual items, they do not accurately represent the severe fatigue that is characteristic for CFS. This should lead to serious questions about the validity and suitability of the Checklist Individual Strength, the Chalder Fatigue Scale, and the Krupp Fatigue Severity Scale for evaluating fatigue in CFS research

    Parameter tuning and cooperative control for automated guided vehicles

    Get PDF
    For several practical control engineering applications it is desirable that multiple systems can operate independently as well as in cooperation with each other. Especially when the transition between individual and cooperative behavior and vice versa can be carried out easily, this results in ??exible and scalable systems. A subclass is formed by systems that are physically separated during individual operation, and very tightly coupled during cooperative operation. One particular application of multiple systems that can operate independently as well as in concert with each other is the cooperative transportation of a large object by multiple Automated Guided Vehicles (AGVs). AGVs are used in industry to transport all kinds of goods, ranging from small trays of compact and video discs to pallets and 40-tonne coils of steel. Current applications typically comprise a ??eet of AGVs, and the vehicles transport products on an individual basis. Recently there has been an increasing demand to transport very large objects such as sewer pipes, rotor blades of wind turbines and pieces of scenery for theaters, which may reach lengths of over thirty meters. A realistic option is to let several AGVs operate together to handle these types of loads. This Ph.D. thesis describes the development, implementation, and testing of distributed control algorithms for transporting a load by two or more Automated Guided Vehicles in industrial environments. We focused on the situations where the load is connected to the AGVs by means of (semi-)rigid interconnections. Attention was restricted to control on the velocity level, which we regard as an intermediate step for achieving fully automatic operation. In our setup the motion setpoint is provided by an external host. The load is assumed to be already present on the vehicles. Docking and grasping procedures are not considered. The project is a collaboration between the company FROG Navigation Systems (Utrecht, The Netherlands) and the Control Systems group of the Technische Universiteit Eindhoven. FROG provided testing facilities including two omni-directional AGVs. Industrial AGVs are custom made for the transportation tasks at hand and come in a variety of forms. To reduce development times it is desirable to follow a model-based control design approach as this allows generalization to a broad class of vehicles. We have adopted rigid body modeling techniques from the ??eld of robotic manipulators to derive the equations of motion for the AGVs and load in a systematic way. These models are based on physical considerations such as Newton's second law and the positions and dimensions of the wheels, sensors, and actuators. Special emphasis is put on the modeling of the wheel-??oor interaction, for which we have adopted tire models that stem from the ??eld of vehicle dynamics. The resulting models have a clear physical interpretation and capture a large class of vehicles with arbitrary wheel con??gurations. This ensures us that the controllers, which are based on these models, are applicable to a broad class of vehicles. An important prerequisite for achieving smooth cooperative behavior is that the individual AGVs operate at the required accuracy. The performance of an individual AGV is directly related to the precision of the estimates for the odometric parameters, i.e. the effective wheel diameters and the offsets of the encoders that measure the steering angles of the wheels. Cooperative transportation applications will typically require AGVs that are highly maneuverable, which means that all the wheels of an individual AGV ahould be able to steer. Since there will be more than one steering angle encoder, the identi??cation of the odometric parameters is substantially more dif??cult for these omni-directional AGVs than for the mobile wheeled robots that are commonly seen in literature and laboratory settings. In this thesis we present a novel procedure for simultaneously estimating effective wheel diameters and steering angle encoder offsets by driving several pure circle segments. The validity of the tuning procedure is con??rmed by experiments with the two omni-directional test vehicles with varying loads. An interesting result is that the effective wheel diameters of the rubber wheels of our AGVs increase with increasing load. A crucial aspect in all control designs is the reconstruction of the to-be-controlled variables from measurement data. Our to-be-controlled variables are the planar motion of the load and the motions of the AGVs with respect to the load, which have to be reconstruct from the odometric sensor information. The odometric sensor information consists of the drive encoder and steering encoder readings. We analyzed the observability of an individual AGV and proved that it is theoretically possible to reconstruct its complete motion from the odometric measurements. Due to practical considerations, we pursued a more pragmatic least-squares based observer design. We show that the least-squares based motion estimate is independent of the coordinate system that is being used. The motion estimator was subsequently analyzed in a stochastic setting. The relation between the motion estimator and the estimated velocity of an arbitrary point on the vehicle was explored. We derived how the covariance of the velocity estimate of an arbitrary point on the vehicle is related to the covariance of the motion estimate. We proved that there is one unique point on the vehicle for which the covariance of the estimated velocity is minimal. Next, we investigated how the local motion estimates of the individual AGVs can be combined to yield one global estimate. When the load and AGVs are rigidly interconnected, it suf??ces that each AGVs broadcasts its local motion estimate and receives the estimates of the other AGVs. When the load is semi-rigidly interconnected to the AGVs, e.g. by means of revolute or prismatic joints, then generally each AGV needs to broadcasts the corresponding information matrix as well. We showed that the information matrix remains constant when the load is connected to the AGV with a revolute joint that is mounted at the aforementioned unique point with the smallest velocity estimate covariance. This means that the corresponding AGV does not have to broadcast its information matrix for this special situation. The key issue in the control design for cooperative transportation tasks is that the various AGVs must not counteract each others' actions. The decentralized controller that we derived makes the AGVs track an externally provided planar motion setpoint while minimizing the interconnection forces between the load and the vehicles. Although the control design is applicable to cooperative transportation by multiple AGVs with arbitrary semi-rigid AGV-load interconnections, it is noteworthy that a particularly elegant solution arises when all interconnections are completely rigid. Then the derived local controllers have the same structure as the controllers that are normally used for individual operation. As a result, changing a few parameter settings and providing the AGVs with identical setpoints is all that is required to achieve cooperative behavior on the velocity level for this situation. The observer and controller designs for the case that the AGVs are completely rigidly interconnected to the load were successfully implemented on the two test vehicles. Experi ments were carried out with and without a load that consisted of a pallet with 300 kg pave stones. The results were reproducible and illustrated the practical validity of the observer and controller designs. There were no substantial drawbacks when the local observers used only their local sensor information, which means that our setup can also operate satisfactory when the velocity estimates are not shared with the other vehicles

    Disability in Chronic Fatigue Syndrome and Idiopathic Chronic Fatigue

    Get PDF
    This is correspondence from a reader in reference to a previous issue

    Urban Design and the Changing Context of Urban Regeneration in the Netherlands

    Get PDF
    Urban design schemes accompanied by avant-garde design of space have been an outcome of economic growth of cities and countries in many periods of time. At the beginning of the 21st century, Nieuw Crooswijk in Rotterdam was the largest area involved in nationally launched policies. Many times the conflicts surrounding the plan were in the news, particularly concerning the aim to attract higher incomes. Gentrification, with displacement of present and original residents forms a central issue and the discussions in Nieuw Crooswijk fit within the more general urban landscape and language of urban regeneration in Europe

    Integrability and duality in spin chains

    Get PDF
    We construct a new, two-parametric family of integrable models and reveal their underlying duality symmetry. A modular subgroup of this duality is shown to connect non-interacting modes of different systems. We apply the new solution and duality to a Richardson-Gaudin model and generate a novel integrable system termed the ss-dd wave Richardson-Gaudin-Kitaev interacting chain, interpolating ss- and dd- wave superconductivity. The phase diagram of this model has a topological phase transition that can be connected to the duality, where the occupancy of the non-interacting mode serves as a topological order parameter.Comment: 10 pages, 2 figures, typos added, reference added, footnote [58] added on page 2, changed phrasing on YBE, acknowledgements update

    Recognition of foreign names spoken by native speakers

    Get PDF
    It is a challenge to develop a speech recognizer that can handle the kind of lexicons encountered in an automatic attendant or car navigation application. Such lexicons can contain several 100K entries, mainly proper names. Many of these names are of a foreign origin, and native speakers can pronounce them in different ways, ranging from a completely nativized to a completely foreignized pronunciation. In this paper we propose a method that tries to deal with the observed pronunciation variability by introducing the concept of a foreignizable phoneme, and by combining standard acoustic models with a phonologically inspired back-off acoustic model. The main advantage of the approach is that it does not require any foreign phoneme models nor foreign speech data. For the recognition of English names by means of Dutch acoustic models, we obtained a reduction of the word error rate by more than 10% relative
    corecore