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Abstract
It is a challenge to develop a speech recognizer that can handle
the kind of lexicons encountered in an automatic attendant or
car navigation application. Such lexicons can contain several
100K entries, mainly proper names. Many of these names are
of a foreign origin, and native speakers can pronounce them in
different ways, ranging from a completely nativized to a com-
pletely foreignized pronunciation. In this paper we propose a
method that tries to deal with the observed pronunciation vari-
ability by introducing the concept of a foreignizable phoneme,
and by combining standard acoustic models with a phonolog-
ically inspired back-off acoustic model. The main advantage
of the approach is that it does not require any foreign phoneme
models nor foreign speech data. For the recognition of English
names by means of Dutch acoustic models, we obtained a re-
duction of the word error rate by more than 10% relative.
Index Terms: spoken name recognition, phonological features,
cross-lingualism

1. Introduction
It is a challenge to develop an automatic speech recognizer
(ASR) that can accurately recognize proper names (e.g. person
names, city names, street names, etc.) when the perplexity of
the task is elevated. In a directory assistance application for in-
stance, there may be a few 100K person names to distinguish. It
is then extremely expensive to build a lexicon containing manu-
ally verified phonetic transcriptions. Hence, one must rely on
an automatic grapheme-to-phoneme (G2P) converter instead.
Such a G2P converter usually produces only one pronunciation
per word. Now there is clear evidence (e.g. [1]) that, depending
on their familiarity with the language of origin, native speak-
ers may use different pronunciations of a foreign name, ranging
from a totally nativized pronunciation (using native phonemes
and native g2p rules) to a totally foreignized pronunciation (us-
ing foreign phonemes and foreign g2p rules). We therefore ar-
gue that the ASR should incorporate lexical and acoustic mod-
els that can cope with this type of pronunciation variability.

In [2] one proposes to use multiple G2P’s to produce mul-
tiple pronunciations of a name: one G2P for the native lan-
guage and one for each likely language of origin of the name
(determined by running a language identification algorithm on
it). The outputs of the non-native G2P’s are then converted to
a native phoneme sequence that is compatible with the native
ASR. Adding pronunciations originating from foreign G2P’s to
the baseline dictionary caused a reduction of the word error rate
(WER) by 25% for foreign names spoken by foreign speakers
and by 10 % for foreign names spoken by native speakers.

In [3], one creates pronunciation variants in a data-driven
way. This is achieved by using native acoustic models to align
each name utterance with a graph of available initial pronun-
ciations of that name (6 per name), and by seeking alterna-

tive phonemes for modeling regions where the acoustics badly
match with the original phonemes. The newly created pronun-
ciations induced an improvement of 20 to 40% over the initial
pronunciations. However, the tests were run on the same names
that were used to learn the new pronunciations.

A number of authors argue that in order to perform well,
the ASR should incorporate acoustic models for non-native
phonemes. In [4] for instance, models of English phonemes
that have no good equivalent in German, are added to the in-
ventory of acoustic models. These models are trained on a cor-
pus of English speech provided by German speakers. By not
converting the modeled foreign phonemes to German in the for-
eign manual transcriptions, one can achieve a reduction of the
WER of 16.5% relative. In [5], non-native pronunciation vari-
ants are generated in a data-driven way. An English phoneme
recognizer generates English pronunciations, and from an align-
ment of these pronunciations with the canonical pronunciations
of the words one trains decision trees that can generate English-
accented variants from German canonical transcription. This
method yields a 5.2 % relative improvement.

In the last two approaches one needs foreign phoneme mod-
els. Consequently, if names from different languages are in-
volved, one needs models for each of these languages. This
may turn out to be impractical, especially when less-resourced
languages are involved, like e.g. Indonesian or Russian. There-
fore we propose a methodology that completely circumvents the
need for foreign language acoustic models, and thus, for speech
data from which to create such models.

Our proposal is to introduce foreignizable phonemes as na-
tive phonemes that can be foreignized to an attached foreign
phoneme. The acoustic score for such a phoneme is obtained
by combining the native acoustic model and a phonologically
inspired back-off acoustic model that takes the properties of the
attached foreign phoneme into account. The basic hypothesis is
that foreign sounds can be represented by a set of phonological
features, and that phonological feature models learned on native
speech sounds are also able to characterize foreign sounds [6].
Obviously, the methodology can also be applied with phonolog-
ical feature models that were trained on multilingual data (it is
shown in [7] that these models are more reliable than monolin-
gually trained models). We did not do that yet.

The outline of this paper is as follows. Section 2 explains
our methodology: how to build the phonologically inspired
back-off acoustic model, how to merge its scores with the clas-
sical acoustic model scores and how to introduce foreignizable
phonemes in the lexicon. Section 3 describes the database and
the spoken name recognition tests we conducted. Section 4
summarizes the most important conclusions of our work.
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2. Methodology
Suppose that q represents a state of a baseline acoustic model,
and that log pA(x|q) is the log-likelihood of acoustic vector x
in this state. Then we propose to replace the baseline acoustic
model score by a two-stream ’log-likelihood’ score

LL(x|q) = g1q log pA(x|q) + g2q [α log pB(x|q) − β] (1)

with log pB(x|q) representing the log-likelihood computed by
means of a phonologically inspired back-off model, g1q and g2q

the state dependent stream weights, and α, β the coefficients
of a global linear model that aims at creating a score with the
same over-all mean and variance as the baseline score. By in-
troducing (α, β) we assume that the stream weights correspond
to stream importances, meaning that we can restrict ourselves
to g1q + g2q = 1.

2.1. Phonological feature models

In a previous paper [8] we introduced a phonological feature
set of 25 binary phonological features (PHFs) to character-
ize acoustic-phonetic units. These features are denoted as fi

(i = 1, .., 25) and are grouped in four feature subsets: (1)
vocal source (voiced, inactive), (2) manner (closure, vowel,
fricative, burst, nasal, approximant, lateral, silence), (3) place-
consonant (labial, labio-dental, dental, alveolar, post-alveolar,
velar, glottal) and (4) vowel-features (low, mid-low, mid-high,
high, back, mid, front, retroflex, rounded). Posterior probabil-
ities P (fi|x) are estimated by a configuration of four neural
networks (see [8] for more details).

2.2. Computing phonological scores

In order to determine pB(x|q) we need to characterize each
state q of a baseline HMM by its phonological features. For
most phonemes, all states of the phoneme inherit the phonolog-
ical features of this phoneme. However, some phonemes like
plosives for instance, are modeled in terms of two acoustic-
phonetic units with different phonological feature sets. The
state q of such a phoneme then takes the phonological feature
set of the acoustic-phonetic unit that best explains the acous-
tic observations assigned to this state during alignments of the
training utterances with their orthographic transcription using
the baseline acoustic models.

Since the phonological feature models compute posterior
probabilities, log-likelihoods will be obtained as

log pB(x|q) = log
PB(q|x)

PB(q)
+ log p(x) (2)

where the subscript B indicates that these are probabilities ac-
cording to the phonological model. Substituting this in Equa-
tion (1) leads to

LL(x|q) = g1q log pA(x|q) + α g2q log p(x)

+ g2q [α log
P (q|x)

P (q)
− β]

We now assume that the second term is much less dependent on
q than the other terms, and we use

LL(x|q) = g1q log pA(x|q) + g2q[α log
PB(q|x)

PB(q)
− β] (3)

as the two-stream score.

Given the phonological description of q, the feature set can
be divided in two subsets: Pq = the set of positive features that
are supposed to be on, and Nq = the set of negative features
that are supposed to be off for that state. Assuming independent
phonological features then leads to the following expression:

log
PB(q|x)

PB(q)
=

X

fi∈Pq

log
P (fi|x)

P (fi)

+
X

fi∈Nq

log
1 − P (fi|x)

1 − P (fi)

However, a statistical analysis of real data has shown that the
two components in the right hand side of is expression are cor-
related (correlation coefficient of 0.75), and therefore, that it
also makes sense to consider them as two estimations of the
same log-likelihood ratio. Therefore, we propose to use some
kind of means of the two as the ultimate estimator:

log
PB(q|x)

PB(q)
= wqp

X

fi∈Pq

log
P (fi|x)

P (fi)

+ wqn

X

fi∈Nq

log
1 − P (fi|x)

1 − P (fi)
(4)

We will investigate in particular what happens if (1) only pos-
itive or negative features are retained, and (2) not the mean of
the log-likelihood ratios (wqp = wqn = 0.5) but the mean
of the log-likelihood ratios per feature (wqp = 1/card(Pq) and
wqn = 1/card(Nq )) are computed.

2.3. Foreignizable phonemes

The baseline pronunciation of a foreign name is normally ob-
tained (see experiments) from its foreign transcription by map-
ping all foreign phonemes to their best equivalent in the na-
tive phoneme inventory. However, if this equivalent has another
phonological feature representation than the original phoneme,
we assume that it can be pronounced in a foreign way. We can
introduce alternative pronunciations containing such so-called
foreignizable phonemes. They appear with a foreign phoneme
extension (see Table 1) in the lexicon. For the case of Dutch as
the native and English as the foreign language, there are six En-
glish phonemes that have no equivalent with the same phono-
logical representation in Dutch (see Table 1). If an English

Table 1: English phonemes (SAMPA notation except for /rr/ and
/r/: see www.phon.ucl.ac.uk/home/sampa) for which the Dutch
equivalent has a different phonological representation. The rep-
resentation differences are added in columns 3 and 4.

Eng. Du. English PHFs Dutch PHFs

Q A – round
V @ mid-low, back mid-high, mid
3: Y r mid-low, mid mid-high(Y), front(Y)

round(Y), trill(r), alveolar(r)
aI A j – round(A)

@U O w mid-high, mid mid-low(O), back(O)
round(O)

rr r approximant trill, alveolar

name then contains an /rr/, it will be mapped to /r rr/, express-
ing that the normal pronunciation is /r/ but it can be pronounced
in a foreign way as /rr/. When a foreign phoneme (e.g. /3:/)
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is mapped onto a sequence of native phonemes (e.g. /Y r/),
each of the latter is foreignized to that foreign phoneme. We

Table 2: Two English names with their baseline and alternative
native transcriptions. ’ ’ represents a short pause.

name transcription
Burr Tuppel baseline b Y r t Y p @ l

alternative b Y 3: r 3: t Y p @ l
Alan Presser baseline E l @ n p r E s @ r

alternative 1 E l @ n p r rr E s @ r
alternative 2 E l @ n p r E s @ r rr
alternative 3 E l @ n p r rr E s @ r rr

consider all alternative pronunciations that can be obtained by
substituting one or more foreignizable phonemes by their native
equivalent. Table 2 shows two names and the variants created
for them.

2.4. Determining the stream weights

In all phoneme states we use the two-stream LL-score to assess
the acoustic match of x to q. The stream weights are the same
for all states of the same baseline acoustic model.

For a native phoneme state, the back-off model is called
with the phonological description of the state as derived from
the native phoneme. The stream weights are phoneme indepen-
dent and presumed to be close to g1 = 1 end g2 = 0.

For a foreignizable phoneme state, the back-off model is
called with the phonological description of the attached foreign
phoneme. The stream weights are supposed to depend on the
identity of the foreign phoneme, and they will be optimized ex-
perimentally (see next section).

3. Experiments

Our experiments are restricted to the recognition of English
names by means of a Dutch speech recognizer. The acoustic
models are 3-state triphone models. They were trained on Co-
GeN, a multi-speaker read speech database [9] capturing the
Flemish variant of Dutch.

The English names were extracted from a spoken name
database provided by Nuance Communications. We extracted
2050 name utterances: 21 different person names (first name +
surname) spoken 3 or 4 times each (on different occasions) by
26 native speakers of Dutch. In order to raise the perplexity of
the task, a lexicon of 1600 names was constructed: the 21 En-
glish names supplemented by 1579 Dutch person names. Au-
tomatically generated transcriptions of the English names were
produced by the general-purpose Dutch and American English
G2P converters from Nuance, and by a dedicated Dutch G2P
converter that was trained on person names. The latter also
generated two pronunciation variants per name [10]. Manual
transcriptions of the English names were available too. Tran-
scriptions of the Dutch person names were always generated
with the general-purpose Dutch G2P.

3.1. Setting up a baseline system

First we investigated the effects of using different types of tran-
scriptions for the foreign names in case the ASR works with
baseline acoustic models only (no back-off model). The lexi-

cons are named as follows:

DuAlone foreign name transcriptions by Dutch G2P
DuMan manual transcriptions added to DuAlone
EngAlone foreign name transcriptions by English G2P
EngMan manual transcriptions added to EngAlone
EngDu foreign name transcriptions by English and

Dutch G2P
EngVars foreign name transcriptions by English G2P and

name-specific Dutch G2P (2 variants per name)
ManAlone only manual transcriptions of foreign names

The word error rates (WERs) and their 95% confidence inter-
vals are listed in Table 3. The most important finding is that

Table 3: Baseline performances (WER + 95% confidence in-
tervals) for ASRs with baseline acoustic models but different
pronunciation lexicons.

lexicon WER (%) CI95 (%)

DuAlone 30.3 28.4 - 32.3
DuMan 23.5 21.6 - 25.3

EngAlone 23.1 21.2 - 24.9
EngDu 18.2 16.5 - 19.9

EngMan 16.8 15.2 - 18.4
EngVars 18.1 16.5 - 19.8

ManAlone 24.7 22.8 - 26.5

English transcriptions are very effective. When used alone, they
even outperform (be it not significantly) the manual transcrip-
tions. A lot of native speakers do seem to use a pronunciation
that is closer to the foreignized than to the nativized pronun-
ciation. A second finding is that manual transcriptions help a
lot in combination with Dutch baseline transcriptions, but a lot
less in combination with English transcriptions. This is because
the manual transcriptions, when differing significantly from the
baseline transciptions, are usually English-like transcriptions.
Finally, the name specific G2P with variants does not outper-
form the general purpose G2P. This is probably because the for-
mer G2P was trained on a database comprising only a small
fraction of English names.

3.2. Testing the proposed methodology

Since one usually has no access to manual transcriptions or a
name-specific G2P, we take lexicon EngDu as our baseline lex-
icon and we create pronunciation variants from the English tran-
scriptions by means of the procedure outlined in Section 2.3.

We first test the phonological back-off model as the only
acoustic model in the ASR. If we take both positive and nega-
tive features into account, the WER is 41.4% when averaging
unnormalized log-likelihood ratios and 37.2% when averaging
normalized log-likelihood ratios. Omitting the negative features
in the two situations, pushes the WER to 43.6% and 38.3% re-
spectively. Consequently, we will use all phonological features
and normalized log-likelihoods.

The next step is to determine the optimal stream weights
for a particular foreignizable phoneme. We do that by remov-
ing all variants containing other foreignizable phonemes, and
by performing a recognition test with the retained variants for
four different values of g1. We then select the g1 yielding the
lowest WER as the stream weight of this phoneme. We repeat
the whole process until we have appropriate weights for all for-
eignizable phonemes. Table 4 shows the recognition results for
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Table 4: Effects of the stream weights on the WER of an ASR in-
corporating a phonologically inspired back-off model. For each
foreign phoneme we included how many times it appears in a
transcription (all transcriptions together count 304 phonemes).

phoneme g1 g2 WER (%)

/3:/ 0.6 0.4 17.7
(1) 0.4 0.6 17.8

0.2 0.8 17.9
0.6 0.4 17.9

/Q/ 0.4 0.6 17.8
(14) 0.2 0.8 17.7

0.8 0.2 18.2
/V/ 0.6 0.4 18.1
(2) 0.4 0.6 18.1

0.8 0.2 18.1
/aI/ 0.6 0.4 18.1
(1) 0.4 0.6 18.4

0.8 0.2 18.1
/@U/ 0.6 0.4 18.1

(2) 0.4 0.6 18.1
0.4 0.6 17.8

/rr/ 0.2 0.8 17.4
(22) 0.1 0.9 17.7
all opt. opt. 16.5

native 0.8 0.2 17.4
0.7 0.3 17.3
0.6 0.4 17.8

all+native 0.7 0.3 16.2

the six foreignizable phonemes we investigated. Apparently, the
positive effect of the back-off model is significant for phonemes
that occur frequently in the transcriptions (/rr/ and /Q/), and for
/3:/, even though it appears only once in the lexicon. If op-
timal stream weights are used for all foreignizable phonemes
(label all), then the WER drops to 16.5%, which represents an
improvement 9.3% relative over the baseline system.

By also using optimized phoneme independent stream
weights for the native phonemes (label native) in the ASR, we
obtain a WER of 16.2% (label all+native) representing an im-
provement over the baseline system of 11% relative. The op-
timal stream weights for the native phonemes clearly favor the
standard acoustic model whereas the opposite is true for the for-
eignizable phonemes.

We also tested the method in combination with a lexi-
con having only two pronunciations per name: the baseline
pronunciation and the pronunciation with all the foreignizable
phonemes present. Using the same stream weights as before,
the WER now becomes 17.1%. Apparently, it is better to let
the ASR choose between a small and a large importance of the
back-off model in the LL-scores of foreignizable phonemes.

4. Conclusions
We have proposed a technique for improving the recognition
of foreign names spoken by native speakers. The method is
based on the introduction of foreignizable phonemes and two-
stream acoustic models for these phonemes. The two-stream
models combine the standard acoustic likelihood on a triphone
state with a phonological score for that state. The phonologi-
cal score is derived from posterior phonological feature prob-
abilities and from the phonological representation of a foreign

phoneme that is associated with the native phoneme. The poste-
rior phonological feature probabilities are computed by means
of neural networks that were trained on native speech only. The
latter means that the presented method does not require any for-
eign phoneme models, nor a speech corpus containing foreign
phonemes from which to train foreign pronunciations.

For the recognition of English person names spoken by
Dutch speakers, the accuracy of our Dutch ASR was improved
by 11% relative. This comes on top of the 40% that was ob-
tained by including baseline pronunciations derived from an En-
glish G2P. The improvement is achieved with a small additional
cost, originating from the computation of phonological scores
and the inclusion of extra variants in the lexicon.

We are aware that our small-scale experiment only offers a
proof of concept and that a test on a larger database with more
different foreign names and more foreign languages is in order.
We are currently preparing such a test (600 different names,
three foreign languages: English, French, Moroccan).
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