625 research outputs found

    The EGF/TGFα Receptor in Skin

    Get PDF
    In responsive cells, all known effects of epidermal growth factor (EGF), transforming growth factor a (TGFα), and related proteins are mediated through binding to a specific membrane receptor. The EGF/TGFα receptor is a single- chain glycoprotein (1186 amino acids) containing three functional domains: 1) an extracellular, glycosylated portion that binds EGF; 2) a small transmembrane portion; and 3) a cytoplasmic portion that has the intrinsic tyrosine kinase activity and multiple sites that can be phosphorylated. When EGF binds to the receptor its intrinsic tyrosine kinase is activated, resulting in increased phosphorylation of intracellular tyrosine residues both on the receptor (autophosphorylation sites) and on exogenous proteins involved in regulating cellular functions. Site-specific mutagenesis has established that the tyrosine-kinase activity of the receptor is essential for nearly all of the effects of EGF including its ability to elevate cellular calcium levels and to induce DNA synthesis. The binding of EGF and the kinase activity of the receptor are both regulated by the phosphorylation of the receptor on specific threonine/serine sites catalyzed by other protein kinases. Specific lipids such as sphingosine also can regulate kinase activity. Tyrosine-specific phosphoprotein phosphatases and perhaps proteases must be important in terminating the cellular response to EGF. In human skin, the response to EGF/TGFα is determined by the location and number of receptors and is modulated by processes affecting the binding affinity, internalization, and tyrosine-kinase activity of the receptor. Specific patterns of EGF binding and of immunoreactive receptors characterize normal growth and differentiation and these are altered during the abnormal growth and differentiation associated with diseases such as psoriasis, viral infections, neoplasms, and paraneoplastic syndromes. It is not clear if the altered patterns reflect the consequence of the disease or are the cause of the disease. As a cause, the EGF receptor may have undetected point mutations that result in internalization and degradation defects, aberrant phosphorylation, and dephosphorylation or abnormal glycosylation

    Visualization of Epidermal Growth Factor Receptors in Human Epidermis

    Get PDF
    The localization of epidermal growth factor (EGF) receptors in normal human epidermis was examined with two independent experimental methods. The distribution of EGF receptor sites was studied using light microscopic autoradiography with [125I]EGF and direct immunocytochemical techniques with EGF receptor antibodies and protein A-colloidal gold complexes. Direct visualization by autoradiography indicated that the concentration of EGF receptors was greatest in the lower epidermal layers. Ultrastructural morphometric analysis of protein A-gold complexes showed that EGF receptors were primarily associated with the plasma membranes although intranuclear and cytoplasmic localization was also evident. This postembedment immunolocalization method also confirmed the relative differences in the number of EGF receptors found in individual epidermal layers (basalis > spinosum > granulosum corneum layers). This inverse relationship between numbers of EGF receptors and the degree of epidermal differentiation and/or keratinization may suggest a physiologic role for EGF in these processes in human epidermis

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    Estimation of peptide concentration by a modified bicinchoninic acid assay

    Get PDF
    Although biuret based protein assays are theoretically applicable to peptide measurement, there is a high level of inter-peptide variation, determined largely by peptide hydrophobicity. This variation in peptide reactivity can be significantly reduced by heat-denaturation of peptides at 95 °C for 5 minutes in the presence of 0.1 M NaOH containing 1% (w/v) SDS, prior to incubation for 30 min at 37 °C in BCA standard working reagent. This modification to the standard bicinchoninic acid (BCA) assay protocol allows for an accurate, rapid and economical estimation of the peptide concentration within an unknown sample

    Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays

    Get PDF
    Turing’s pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing’s model has received limited attention. Here, we novelly focus on the Gierer–Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing’s mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99–130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing’s model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing’s mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing’s mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning

    Enzymatic pre-treatment of microalgae cells for enhanced extraction of proteins

    Get PDF
    Crude proteins and pigments were extracted from different microalgae strains, both marine and freshwater. The effectiveness of enzymatic pre-treatment prior to protein extraction was evaluated and compared to conventional techniques, including ultrasonication and high-pressure water extraction. Enzymatic pre-treatment was chosen as it could be carried out at mild shear conditions and does not subject the proteins to high temperatures, as with the ultrasonication approach. Using enzymatic pre-treatment, the extracted proteins yields of all tested microalgae strains were approximately 0.7 mg per mg of dry cell weight. These values were comparable to those achieved using a commercial lytic kit. Ultrasonication was not very effective for proteins extraction from Chlorella sp., and the extracted proteins yields did not exceed 0.4 mg per mg of dry cell weight. For other strains, similar yields were achieved by both treatment methods. The time-course effect of enzymatic incubation on the proteins extraction efficiency was more evident using laccase compared to lysozyme, which suggested that the former enzyme has a slower rate of cell disruption. The crude extracted proteins were fractionated using an ion exchange resin and were analyzed by the electrophoresis technique. They were further tested for their antioxidant activity, the highest of which was about 60% from Nannochloropsis sp. The total phenolic contents in the selected strains were also determined, with Chlorella sp. showing the highest content reaching 17 mg/g. Lysozyme was also found to enhance the extraction of pigments, with Chlorella sp. showing the highest pigments contents of 16.02, 4.59 and 5.22 mg/g of chlorophyll a, chlorophyll b and total carotenoids, respectively

    Ultraviolet refractometry using field-based light scattering spectroscopy

    Get PDF
    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g.Hamamatsu CorporationNational Science Foundation (DBI-0754339)National Center for Research Resources of the National Institutes of Health (P41-RR02594-18

    Incorporation of proteins into complex coacervates

    Get PDF
    Complex coacervates have found a renewed interest in the past few decades in various fields such as food and personal care products, membraneless cellular compartments, the origin of life, and, most notably, as a mode of transport and stabilization of drugs. Here, we describe general methods for characterizing the phase behavior of complex coacervates and quantifying the incorporation of proteins into these phase separated materials
    • …
    corecore