1,717 research outputs found

    Effect of intraoperative fluid optimisation on renal function in patients undergoing emergency abdominal surgery; a randomised controlled pilot study (ISRCTN 11799696) Fluid optimisation for emergency surgery

    Get PDF
    <b>Background:</b> Emergency abdominal surgery carries a high risk of postoperative morbidity and mortality. Goal directed therapy has been advocated to improve outcome in high-risk surgery. The aim of the present pilot study was to examine the effect of goal directed therapy using fluid alone on postoperative renal function and organ failure score in patients undergoing emergency abdominal surgery. <b>Methods:</b> This prospective randomised pilot study included patients over the age of 50 undergoing emergency abdominal surgery. In the intervention group pulse pressure variation measurements were used to guide fluid boluses of 6% Hydroxyethylstarch 130/0.4. The control group received standard care. Serum urea, creatinine and cystatin C levels were measured prior to and at the end of surgery and postoperatively on day 1, day 3 and day 5. <b>Results:</b> Thirty patients were recruited. One patient died prior to surgery and was excluded from the analysis. The intervention group received a median of 750ml of hydroxyethylstarch. The peak values of postoperative urea were 6.9 (2.7–31.8) vs. 6.4 (3.5–11.5)mmol/l (p=0.425), creatinine 100 (60–300) vs. 85 (65–150) μmol/l (p=0.085) and cystatin C 1.09 (0.66–4.94) vs. 1.01 (0.33–2.29)mg/dl (p=0.352) in the control and intervention group, respectively. <b>Conclusions:</b> In the present pilot study replacing the identified fluid deficit was not associated with a change in renal function. These results do not preclude that goal directed therapy using fluid alone may have an effect on renal function but they would suggest that the effect size of fluid optimisation alone on renal function is small

    Optical followup of galaxy clusters detected by the South Pole Telescope

    Full text link
    The South Pole Telescope (SPT) is a 10 meter telescope operating at mm wavelengths. It has recently completed a three-band survey covering 2500 sq. degrees. One of the survey's main goals is to detect galaxy clusters using Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological and astrophysical studies such as the dark energy equation of state, the primordial non-gaussianity and the evolution of galaxy populations. Since 2005, we have been engaged in a comprehensive optical and near-infrared followup program (at wavelengths between 0.4 and 5 {\mu}m) to image high-significance SPT clusters, to measure their photometric redshifts, and to estimate the contamination rate of the candidate lists. These clusters are then used for various cosmological and astrophysical studies.Comment: For TAUP 2011 proceeding

    Theory of Magnetic Properties and Spin-Wave Dispersion for Ferromagnetic (Ga,Mn)As

    Full text link
    We present a microscopic theory of the long-wavelength magnetic properties of the ferromagnetic diluted magnetic semiconductor (Ga,Mn)As. Details of the host semiconductor band structure, described by a six-band Kohn-Luttinger Hamiltonian, are taken into account. We relate our quantum-mechanical calculation to the classical micromagnetic energy functional and determine anisotropy energies and exchange constants. We find that the exchange constant is substantially enhanced compared to the case of a parabolic heavy-hole-band model.Comment: 9 pages, 4 figure

    Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    Get PDF
    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature
    • …
    corecore