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One of the most important factors currently preventing the practical use of hybrid rockets 
as boosters is the limited thrust level that can be generated from a simple port design. 
This limitation can be addressed either through a complex port geometry (with associated 
mechanical strength and fuel utilization issues) or by increasing the mass-burning rate of 
the oxidizer/fuel combination.  A promising method to improve the regression rate of solid 
fuels used in hybrid rockets is to use a fuel with a high regression rate such as low 
melting point paraffin wax; however, additional increases to the fuel regression rate are 
necessary to make the fuel a viable candidate to replace current launch propulsion 
systems. Addition of energetic and/or nano-sized combustible particles can also increase 
mass-burning rates of the solid fuels and increase the overall performance of the hybrid 
rocket motor system.1,2 Improving the mechanical properties of the paraffin wax is also 
important to produce more robust solid-fuel grains. This investigation studied the effect of 
various additives to paraffin wax burned with gaseous oxygen in a test rig called the 
Long-Grain Center-Perforated (LGCP) hybrid rocket motor. Shown in Figure 1, this lab-
scale motor has been used for characterization of various oxidizer and fuel formulations.3 
 

Several paraffin-based fuel grains with various energetic additives [e.g., lithium aluminum 
hydride (LiAlH4) and cyclotrimethylenetrinitramine (RDX)] have been cast, and 
paraffin/LiAlH4 fuel grains have been tested at representative oxidizer flux conditions. A 
major advantage of using LiAlH4 as an additive to paraffin is the decreased dependency 
of Isp on oxidizer-to-fuel ratio. However, previous testing showed that continued work is 
necessary to eliminate deposition of unburned/unreacted fuel in downstream sections of 
the hybrid rocket motor.4 Changes to the fuel matrix include higher melting point wax and 
smaller (ball-milled) LiAlH4 particles. With these changes, much more complete 
combustion was observed.  Addition of LiAlH4 at 10% by weight was found to increase 
regression rates between 7 – 10% over baseline paraffin. Mass burning rates were also 
higher.   
 
Another promising fuel formulation consideration is to incorporate a small percentage of 
RDX as an additive to paraffin. A novel casting technique was used by dissolving RDX in 
a solvent (dimethylformamide) chosen for its compatibility with both paraffin and RDX, 
and combining the solution with the melted paraffin. The solvent was then evaporated out 
of the mixture, leaving the re-crystallized RDX dispersed in the paraffin. At low 
percentages of RDX additive and with RDX particles surrounded by paraffin, the fuel 
grains can remain inert, maintaining safety of the solid fuel. It was found that although all 
the solvent was removed, the process as currently applied was not conducive to 
generating small RDX particles. Neither rapid boiling nor slow removal of the 
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dimethylformamide produced particles of satisfactorily small size. Large particles were 
observed to settle in the melted paraffin wax, generating a non-homogeneous fuel grain 
structure. 
 
One approach to improve mechanical properties of paraffin wax is with the addition of 
multi-walled carbon nanotubes (MWNT). For casting these solid-fuel grains, various 
percentages of MWNT were debulked via a sonication process similarly described in the 
literature5 and then added to the paraffin wax. The cost of MWNT is a small fraction of 
single-walled nanotubes. This is a scale-up advantage as future applications and projects 
will require low cost additives to maintain cost effectiveness. The fuel samples containing 
MWNT (up to 8%) showed good distribution of MWNT in the paraffin matrix, but the 
MWNT were often agglomerated, indicating that a change to the sonication and mixing 
processes were required to achieve better uniformity and debundled MWNT. Fuel grains 
with MWNT fuel grains had slightly lower regression rate, likely due to the increased 
thermal conductivity to the fuel subsurface, reducing the surface temperature.   
 

 
Figure 1. Photograph of LGCP hybrid rocket motor firing with a pure paraffin fuel 
grain manufactured by the Aerospace Corporation 
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ABSTRACT 
 

This investigation studied the inclusion of various additives to paraffin wax for use in a 
hybrid rocket motor. Some of the paraffin-based fuels were doped with various 
percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase 
regression rates between 7 – 10% over baseline paraffin through tests in a gaseous oxygen 
hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also 
higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a 
novel casting process which involved dissolving RDX into dimethylformamide (DMF) 
solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to 
evaporate out the DMF. It was found that although all DMF was removed, the process was 
not conducive to generating small RDX particles. The slow boiling generated an 
inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to 
cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 
grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a 
hybrid rocket motor, and assorted samples containing a range of MWNT percentages in 
paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in 
the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to 
the sonication and mixing processes were required to achieve better uniformity and 
debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, 
likely due to the increased thermal conductivity to the fuel subsurface, reducing the 
burning surface temperature.  
 
 

INTRODUCTION 
 

There are many advantages to hybrid rockets over solid and liquid rocket propulsion 
systems. One key advantage is safety. In contrast to a solid propellant, where the fuel and 
oxidizer are integrally mixed, a hybrid motor consists of an inert fuel and a separated oxidizer. 
This simple design contrasts with the complexity of liquid rocket systems. With an inert fuel, 
shipping and storage costs for hybrid fuels are significantly reduced, lowering overall cost. 
Hybrid fuels can also present lower environmental hazards due to exclusion of ammonium 
perchlorate (AP), which is commonly used as an oxidizer in solid propellants. This reduces 
impact on groundwater and the environment. A hybrid can also be throttled and has the potential 
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for stop and restart on demand. Although there are many benefits to using a hybrid rocket 
system, improved burning rates and mechanical strength would further raise the technology 
readiness level (TRL) of paraffin-fueled hybrid rockets.1 Paraffin wax-based solid fuels for use 
in hybrid rockets have shown regression rates which are far superior to conventional pyrolyzing 
fuels, with burn rates three to four times higher than HTPB.2,3 To further improve the mass 
burning rates of solid fuels, it is often useful to employ energetic and/or nano-sized particles. 
Hybrid rocket solid fuels with energetic or nano-sized particle additives have demonstrated 
significantly higher burning rates over baseline fuels.4,5  
 In an effort to improve the mass burn rates of hybrid rocket motors, the co-authors from 
the Aerospace Corporation have formulated and cast several solid-fuel grains containing lithium 
aluminum hydride (LiAlH4 or LAH). The LiAlH4 fuel grains have shown the ability to ignite 
with strong acids, demonstrating the potential for restart on demand with a simple ignition 
method. The reaction of the paraffin fuel (C32H66) doped with LiAlH4 to strong acids (e.g., nitric 
acid) was found to be hypergolic.6,7 A key benefit of using LiAlH4 in paraffin wax are reduced 
dependency of specific impulse (Isp) on oxidizer-to-fuel ratio. The LiAlH4 addition allows for 
system operation through a wider range oxidizer-to-fuel ratio (O/F) while remaining close to 
peak Isp. This benefit is shown in Fig. 1. Addition of LiAlH4 to paraffin also increased theoretical 
characteristic velocity. Previous tests on solid-fuel grains revealed that a change in to the fuel 
matrix (i.e., higher melting point fuel and smaller LiAlH4 particles) might help to reduce the 
amount of unburned fuel which was accumulating in downstream sections of the hybrid motor 
(up to 22% of mass lost). 8  Smaller (ball-milled) LiAlH4 particles have been found to 
dehydrogenate more rapidly, the first step in the decomposition reaction of LiAlH4.

9  
 

  
Figure 1. Thermochemical calculations of Isp for various percentages of LiAlH4 in paraffin 
wax (calculated for chamber pressure of 6.9 MPa with a nozzle expansion ratio of 10) 
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 Cyclotrimethylenetrinitramine (C3H6N6O6), commonly known as RDX, is another 
additive with the potential to increase bulk density as well as improve the mass burning rates of 
paraffin. With a density of 1.82 g/cm3, RDX is around twice the density of paraffin wax.10 In 
addition to increasing the bulk density of the hybrid fuel, RDX may also increase the mass burn 
rates of the fuel, because it is an energetic material. RDX is a familiar ingredient in rocket and 
high-energy gun propellants. A novel casting technique of dissolving RDX in a solvent which is 
compatible with paraffin wax could produce well-dispersed particles of RDX embedded in a 
paraffin fuel matrix.  

Inclusion of RDX in low percentages (< 15%) would keep the solid-fuel grain effectively 
inert. A DOT Class 1.4C rating was given to fuel-rich propellant formulations containing 60% 
AP in an HTPB/PPG binder for use in a hybrid rocket.11,12 Keeping the fuel grain relatively inert  
with a hazard classification below 1.3 is essential to maintaining the overall safety and 
operability advantages of the hybrid system. Thermal and stability behavior of RDX is well 
known and documented.9  RDX is soluble in various solvents such as acetone and 
dimethylformamide (C3H7NO), and the solubility data has been extensively documented.13 Once 
the RDX is dissolved in the solvent, the solvent can be boiled out of the melted paraffin. The 
boiling point of dimethylformamide (DMF) is high (~153 °C), but a vacuum can be drawn to 
lower the boiling point of the DMF to a value closer to the melting point of paraffin wax.14 In 
this study, DMF was selected due to its high solubility of RDX with boiling point higher than the 
casting temperature of paraffin wax at atmospheric pressure and a boiling point below the 
paraffin casting temperature at sub-atmospheric pressures. 
 Along with increasing bulk density and regression rate, the mechanical properties of 
paraffin can be improved to provide more robust solid-fuel grains. Mechanical properties of 
paraffin-based solid fuel have been tested and published.15 The inclusion of multi-walled carbon 
nanotubes (MWNT) has the potential to improve mechanical properties and change the burn rate 
of paraffin wax. Prior to this study, MWNT have been added to paraffin wax and tested for 
thermal performance. These samples showed an increase in thermal conductivity as MWNT 
additive amount increased.16 Mixing procedures for distributing multi-walled carbon nanotubes 
in polymers as well as a phenolic resin for ablative applications have also been documented in 
the literature.17,18 MWNT are much lower cost compared to single-walled nanotubes. Due to the 
mechanical strength advantageous and low cost, MWNT were selected as an additive to paraffin 
wax to determine mechanical property benefits and changes in regression rate.  
 

METHOD OF APPROACH 
 

 Work presented in this paper occurred in several phases. The Aerospace Corporation ball 
milled LiAlH4 and cast paraffin-based fuel grains with various percentages of LiAlH4. Solid-fuel 
grains were also cast at the High Pressure Combustion Lab (HPCL) at the Pennsylvania State 
University (PSU). Solid-fuel grain samples which were processed at the HPCL included RDX 
and MWNT additives in paraffin. The paraffin wax with MWNT samples were sent to the Center 
for Nano and Molecular Science and Technology at University of Texas—Austin for TGA and 
SEM analysis. Along with these small (~50 gram) samples of solid fuel for thermal analysis, 
hybrid rocket fuel grains were also manufactured for test firings. All types of solid-fuel grains 
produced either at the Aerospace Corporation or at PSU were tested in a hybrid rocket system at 
PSU.  
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LiAlH4 Casting  
 
 In order to reduce LiAlH4 particle size, the coauthors from the Aerospace Corporation 
used a ball milling technique. Because LiAlH4 is reactive with water, it must been kept in a 
nitrogen environment as much as possible. LiAlH4 particles were ball milled for various amounts 
of time and examined using SEM techniques. Particles milled for 300 hours were cast into 
paraffin wax with a melting point between 70 and 80 °C. This was performed by melting the wax 
and mixing the additives before pouring into a paper phenolic tube held inside an aluminum 
mold. The paper phenolic tube, which serves as the hybrid rocket motor solid-fuel cartridge, has 
an outer diameter of 1.5 inches (3.81 cm), an inner diameter of 1.25 inches (3.175 cm), and was 
cut to 16-inch (40.64-cm) lengths to fit inside the aluminum mold. Once wax was poured into the 
mold, it was spun on a lathe to bond the solid fuel to the case wall, because the wax shrinks 
during cooling. These steps were repeated for multiple pours to fill the fuel grain cartridge. After 
each grain had solidified, a center port between 0.35 and 0.51 inches (.889 and 1.295 cm) was 
cut, and the grain was cut to lengths of 4, 5, and 5.5 inches (10.16, 12.7, and 13.97 cm) in order 
to maintain desirable combustion O/F ratios at the three different oxidizer flux levels tested.  
 
RDX Casting  
  
 Before casting full-size fuel grains for use in an HPCL hybrid rocket motor, 50 gram 
samples consisting of 4 wt% of RDX and 96 wt% of paraffin were generated. Wetted, Class I, 
Type II military grade RDX was measured and baked at low temperature in order to dry out the 
RDX powder. The RDX powder was then weighed again, and dissolved in approximately 15 mL 
of dimethylformamide. Once dissolved, the DMF/RDX solution could safely be transferred to 
the casting chamber, where paraffin wax had been melted and held at around 100 °C. The 
heating and mixing setup is shown in Fig. 2. It should be noted that all mixer clearances were 
checked to avoid contact with the mixing bowl and equipment was grounded in accordance with 
DoD standards. With the mixer turned on, the DMF/RDX solution was poured into the melted 
paraffin. The environmental chamber door was then closed, and a camera with a live feed was 
placed near the window, so that the casting process could be monitored remotely.  
 

 
Figure 2. Solid fuel casting setup in vacuum chamber 
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 The chamber was then pumped down to approximately 4 psia (27.6 kPa), where the 
boiling point of the DMF is around 110 °C. The paraffin temperature was raised to above this 
value, so that the DMF could boil out slowly, allowing RDX to nucleate out of the supersaturated 
DMF/RDX solution. After approximately 1.5 hours of continuous mixing, a vacuum was slowly 
drawn down to ~1 psia (6.9 kPa) to check for bubbling from any remaining DMF. When there 
was no boiling of DMF, this indicated that no DMF remained in the mixture. The chamber was 
then pressurized, heating equipment was turned off, and mixing was stopped. Photographs of the 
liquid paraffin mixture with suspended RDX particles were taken before the paraffin cooled, to 
check for the dispersion status of RDX particles. 
 
MWNT Casting  
 
 Casting of MWNT occurred in several steps. In order to evenly disperse the MWNT in 
paraffin and take advantage of their small size, the MWNT must be debulked. This is typically 
done by sonicating the MWNT in a solvent and then removing the solvent from the final 
material. In this study, the MWNT were sonicated in toluene. The typical ratio of MWNT to 
toluene was between 1 and 2 grams per 100 mL of toluene. The sonication process was limited to 
approximately 20 minutes, as toluene has been observed to break down if sonicated intensely or 
for long periods of time.19 Because toluene’s boiling point is around 110 °C, the paraffin can be 
heated slowly until it is above toluene’s boiling point and held at that temperature until the 
toluene is fully removed.  

After sonicating the toluene/MWNT mixture and adding it to paraffin held at around 100 
°C, the environmental chamber door was closed, with a vent line to atmosphere. Due to toluene’s 
flammability in air, the environmental chamber was constantly purged with nitrogen during the 
mixing process until the toluene was removed. A fan was also used on the interior of the 
environmental chamber to promote circulation of the dense toluene vapors. Small scale batches 
of 50 grams were generated with various MWNT additive amounts ranging from 0 to 8% 
MWNT. These small scale samples were sent to the Center for Nano and Molecular Science and 
Technology at University of Texas—Austin for DSC, TGA, and SEM testing.  

A fuel grain for testing in a hybrid rocket motor was also generated. The formulation for 
this grain was 4 wt% MWNT in paraffin wax. Instead of using an aluminum mold to seal the 
paraffin inside the phenolic fuel cartridge, PSU’s casting process used end caps on the phenolic 
fuel cartridge. The grain was spun on a lathe at approximately 400 rpm and then reheated in an 
oven to soften the wax before the next pour. This was performed to generate better bonding 
between poured layers and good adhesion of the fuel to the case wall. The grains were then cut to 
4.5-inch (11.43-cm) lengths.  
 
Hybrid Rocket Motor Test Setup 
 
 The hybrid rocket motor used to evaluate the solid-fuel grains in this study is called the 
Long Grain Center Perforated (LGCP) hybrid rocket motor. It allows for fuel grains with lengths 
up to 16 inches (40.64 cm) and has an inner diameter of 1.5 inches (3.81 cm).5 Using graphite 
inserts as volume-filling spacers, fuel lengths can be varied significantly to control fuel burning 
surface area. The LGCP system is shown in Fig. 4. In these experiments, desired pressures were 
typically between 200 and 350 psia (1.38 MPa and 2.41 MPa), depending on nozzle size. The 
small size of the LGCP and fast turnaround times during testing make it an ideal motor for 
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testing new fuel formulations, while consuming a minimal amount of fuel. The LGCP ran with 
gaseous oxygen and with a nitrogen purge for this test matrix, but the LGCP can accommodate 
other oxidizers such as nitrous oxide.  
 

 
Figure 4. Schematic diagram of long grain center perforated (LGCP) hybrid rocket motor 
setup  
 
 The results from the LGCP motor firings are best for comparing different formulations of 
solid fuel because of the relatively thin fuel web and resulting short burn duration for high-
regression rate fuel formulations. Equations (1) and (2) were used in developing plots of 
regression rate versus oxidizer mass flux. 20  Di and Df are initial and final fuel grain port 
diameters respectively, and tb is the burn time. Final port diameter (Df) is often found by 
measuring in several places at the fore and aft end of the fuel grain after firing, but in the case of 
this study Eq. (3) is used. This relies on accurate measurements of grain mass and fuel density 
rather than center port diameters measured along the length of the post-fired fuel grain. In Eq. 
(3), Mi and Mf are the initial and final mass of the solid fuel, respectively. 
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the MWNT are not fully dispersed in toluene during sonication, because sonication time is 
limited by toluene breakdown. Therefore, the use of a wand-type sonicator to simply sonicate the 
MWNT in the paraffin is required. This could provide good mixing of the MWNT and also 
debulk the nanotubes in the process, while eliminating the need for toluene.  
 
Hybrid Rocket Motor Test Results 
  
 Various fuel formulations were tested in the LGCP hybrid rocket motor in this study, 
including different pure paraffin formulations as baselines, 4 wt% MWNT in paraffin, 5 wt% 
LiAlH4 in paraffin, and 10 wt% LiAlH4 in paraffin. A photograph of an LGCP motor firing is 
shown in Fig 10.  
 

 
Figure 10. Photograph of LGCP hybrid rocket motor tested with a pure paraffin fuel grain 
manufactured by the Aerospace Corporation. 
 
 In a previous study conducted by PSU and the Aerospace Corporation team members, 
non-negligible amounts of LiAlH4 in paraffin wax were deposited in the downstream sections of 
the hybrid rocket setup (i.e., graphite transition section and nozzle). Due to these accumulations, 
the tests were run at similar conditions, with initial oxidizer mass fluxes of approximately 220 
kg/m2-s with chamber pressures typically between 150 and 250 psig (1.03 and 1.72 MPa).8 In 
this test series, the amount of deposited fuel on the downstream sections of the hybrid rocket 
motor was found to be negligible. There was still a thin film of particles which thinly coated the 
inside of the transition section, but it was not an appreciable mass. However, upon submerging 
the transition section in water, it was found to bubble slowly. This indicated that some form of 
LiAlH4 was still unreacted in the downstream components of the motor, since LiAlH4 is highly 
reactive with water. A set of typical pressure-time traces is given in Fig. 11.  
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If not otherwise noted in Fig. 12 and Fig. 13, and aside from one test where fuel grain 
which burned into the phenolic cartridge wall (5% LiAlH4), all other tests were run with O/F 
values between around 2 to 2.4. For the Aerospace Corporation manufactured grains, the O/F for 
the pure paraffin tests was around 2.3 to 2.4, while the O/F for the grains doped with 10% 
LiAlH4 was between 2 and 2.2. This is satisfactory because, as shown in Fig. 1, peak Isp for 10% 
LiAlH4 occurs at a slightly lower O/F value than for pure paraffin. Regression rate data in Fig. 11 
also supports previous assertions that increases in LiAlH4 additive allow a hybrid rocket to run at 
lower O/F ranges than pure paraffin without sacrificing Isp. This is most clear when looking at 
the data points from pure Aerospace Corporation paraffin and 10% LiAlH4 which show a 
regression rate of ~2.6 mm/s. The 10% LiAlH4 paraffin was run at lower oxidizer mass flux, but 
achieve the same regression rate. It can be concluded that increases in LiAlH4 content can 
improve regression rate of the paraffin fuel; however, the described tests are a limited test 
sequence. In order to achieve a more complete test matrix, fuel grains containing 15-25% sub-
micron LiAlH4 could be processed and tested to better observe the effect of this beneficial 
additive. Load cell data was not conclusive when analyzed for large differences in thrust between 
the LiAlH4/paraffin motors compared to pure paraffin motors. This was because chamber 
pressures between LiAlH4-doped paraffin and pure paraffin fuel grains were very similar. 
Chamber pressures between the two tests at each condition were within 5% of each other. 
 

SUMMARY AND CONCLUSIONS 
 

1) LiAlH4 particle size was significantly reduced over 300 hours of ball milling and fuel 
grains with 0, 5, and 10 wt% of LiAlH4 showed excellent homogeneity. Examination of 
the post-fired samples of the paraffin fuel grains with LiAlH4 revealed highly uniform 
center port geometry. 

2) A 10 wt% addition of LiAlH4 to paraffin wax showed a 7 – 10% increase in regression 
rate over that of the baseline paraffin fuel cast by Aerospace Corporation, although part 
of this increase in burn rate is likely due to lower density of the LiAlH4-doped paraffin 
wax compared to pure paraffin. Mass burn rate comparisons confirmed a burn rate 
increase for grains doped with LiAlH4 over pure paraffin.  

3) Solid-fuel samples with MWNT were imaged using an SEM, and revealed uniform 
MWNT distribution, although the MWNT were often clumped together. Changes to the 
casting procedure are required to better disperse the MWNT in the paraffin. The 
paraffin/4 wt% MWNT fired in the LGCP hybrid rocket motor demonstrated consistent 
burning, although regression rate was slightly lower than the baseline PSU paraffin fuel. 
This reduction in regression rate is believed to be caused by the increase in thermal 
conductivity of the solid fuel with MWNT additives. When the energy transfer to the 
subsurface region is faster, the fuel surface temperature may be reduced, therefore 
resulting in reduced mass burning rates.  

4) A novel RDX/paraffin casting procedure was developed and demonstrated. RDX 
particles nucleating out of the dimethylformamide/RDX solution were too large, likely 
due to a slow boiling process. Improvements to the process were identified to achieve 
more uniform properties in paraffin wax.  
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Future Work 
 

1) Additional testing is planned for test firings with paraffin fuels containing 20 wt% 
LiAlH4, in order to generate more systematic data to better characterize the enhancement 
of regression by this energetic additive.  

2) Cast new grains for use in a larger hybrid rocket motor system at PSU’s High Pressure 
Combustion Lab. The X-ray Transparent Center-perforated (XTC) hybrid rocket motor 
allows for real time regression analysis which is far more accurate in determining 
regression rates for various fuel formulations. 

3) Cast new batches of RDX with smaller, more evenly distributed particles in the paraffin 
matrix by drawing a deeper vacuum to cause supersaturation of RDX in the boiling 
dimethylformamide solvent.  

4) Create paraffin/MWNT samples for mechanical testing at the University of Texas—
Austin. Also, cast new grains with carbon black to compare with similar percentages of 
MWNT.  
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Introduction

• Three solid-fuel additives considered for use in paraffin fuel in hybrid 
rocket system burning with gaseous O2 :
– Lithium Aluminum Hydride {LAH or LiAlH4}

• LiAlH4 shown to be pyrophoric with strong acids (e.g., nitric 
acid))

• Restart on demand without replacement igniters
• Fuel grains manufactured at the Aerospace Corporation

Cyclotrimethylenetrinitramine {RDX or C H N O }– Cyclotrimethylenetrinitramine {RDX or C3H6N6O6} 
• Energetic additive with potential to increase density specific 

impulse
M lti W ll d C b N t b {MWNT}– Multi-Walled Carbon Nanotubes {MWNT}
• Potential to increase mechanical properties

• Solid-fuel grains tested in a hybrid rocket motor at PSU’s High 

The Pennsylvania State University The Aerospace Corporation

Pressure Combustion Laboratory (HPCL)

2The Pennsylvania State University 



Hybrid rocket pros and consHybrid rocket pros and cons

Advantages:Advantages:
• Improved safety
• RobustnessRobustness
• Environmental impact
• Low cost

Disadvantages:
• Low bulk density• Low bulk density
• Low regression rate
• O/F shift Kuo and Chiaverini, 2005

The Aerospace Corporation 3

O/F shift ,

The Pennsylvania State University 



Thermochemical calculations: 
Isp vs. O/Fsp 
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Larson, et al., 2011
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Pressure-time traces for 
various additives
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Ignition at time = 0 s and tests at initial O2 fluxes of ~220 kg/m2-s
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Fuel deposits in downstream 
sections of hybrid rocket motory

• Observed deposition of unburned/unreacted 
fuel from hybrid motor firingsy g
- Typical results showed several grams of 

accumulation in downstream sections
10% 22% of fuel trapped downstream- 10% - 22% of fuel trapped downstream

• LiAlH4 particles may have been too large
• Particles may have been getting trapped in 

wax and carried downstream
- Higher melting point wax may allow 

more complete LiAlH4 particle reaction 
due to higher temperatures near burning 
fuel surface
o Thinner melt layer

The Pennsylvania State University The Aerospace Corporation 6
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Solid-fuel grain characteristicsSolid fuel grain characteristics

Desirable Features: Undesirable Features:
• Homogeneous grain 

structure
Hi h bili

• Voids in grain
• Deposition of fuel in 

d• High repeatability
– P-t trace data
– Consumption rate

downstream components
– Unreacted additive particles

• Grain delamination prior top

• Uniform surface burning
• Complete combustion

Grain delamination prior to 
or during burn

• Uneven burning
• High regression rate
• Structure integrity

• Low regression rate
• Poor mechanical properties

The Aerospace Corporation 7The Pennsylvania State University 



Ball-milled LiAlH4 particlesBall milled LiAlH4 particles

10 hours 300 hours35 hours

• Majority of particles less than 100 nm after 300 hours• Majority of particles less than 100 nm after 300 hours
• Many particles have alumina layer

- Could delay or inhibit combustion/particle decomposition 

The Aerospace Corporation 8The Pennsylvania State University 
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Aerospace Corp. fuel grain casting

• Wax melted in beaker
Larson, et al., 2011

- LiAlH4 addition occurred in 
N2-purged bag 

• Mixture was poured intoMixture was poured into 
phenolic tube through filling 
ports on wax motor mold

Spun on lathe @ 400 RPM- Spun on lathe @ 400 RPM
• Grains cast in 3 poured layers
• Grains were perforated with a 

3/8-inch hole and cut to various 
lengths

The Pennsylvania State University The Aerospace Corporation 9The Pennsylvania State University 



PSU fuel grain casting

• Wax melted in mixing pot
Environmental chamber can• Environmental chamber can 
be used with N2 purge or 
vacuum pump
- MWNT with nitrogen
- RDX with vacuum

• Spun on lathe @ 400 RPMSpun on lathe @ 400 RPM
• Grains cast in 2 poured layers
• Grains were perforated with a 

3/8-inch hole and cut to 
various lengths

The Pennsylvania State University The Aerospace Corporation 10The Pennsylvania State University 



Paraffin/RDX fuel sample casting

The Pennsylvania State University The Aerospace Corporation 11The Pennsylvania State University 



RDX fuel sample casting result

The Pennsylvania State University The Aerospace Corporation 12



Paraffin/MWNT fuel casting

• MWNT measured and mixed with toluene 
– (100mL toluene / 1-2 grams MWNT)( 00 / g )

• Beaker floated in water sonication bath and sonicated for ~20 mins
• Mixture transferred to melted paraffin (held at < 110 °C)
• Environmental chamber door closed nitrogen purge gas flow started• Environmental chamber door closed, nitrogen purge gas flow started
• Paraffin temperature increased above BP of toluene
• Mixed until complete removal of toluene
• Various small fuel samples (<50 grams) sent to Center for Nano and 

Molecular Science at University of Texas—Austin for TGA, DSC, 
and SEM tests
– 0% - 8% MWNT concentrations

• One solid-fuel grain (paraffin/4% MWNT) cast for testing in hybrid 
rocket motor

The Pennsylvania State University The Aerospace Corporation 13The Pennsylvania State University 



Paraffin/MWNT fuel samples

The Pennsylvania State University The Aerospace Corporation 14

Increasing SEM magnification from 1mm to 100 μm for paraffin/4% MWNT sample 



Paraffin/MWNT fuel samples

• 8% MWNT with uncoated (left) and coated (right) surfaces
• MWNT is well distributed, but clumped together

The Pennsylvania State University The Aerospace Corporation 15
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Hybrid rocket motor firings

Long-Grain Center-Perforated (LGCP) hybrid rocket motor:
Cartridge load system for a paper phenolic tube with 38 1– Cartridge load system for a paper phenolic tube with 38.1-
mm (1.5˝) diameter and length of 406.4 mm (16˝)

– Chamber pressures up to 12 MPa (1,750 psi)
O f / ( / )– O2 mass flow rates up to 0.36 kg/s (0.8 lbm/s)

o Tests in this study:
 Pressure max was ~3.2 MPa (~465 psi)
 O2 mass flow rates between 20 and 54 g/s       

(0.044 – 0.119 lbm/s)
 Average O2 flux (Gox) values between                     g 2 ( ox)

49 and 115 kg/m2-s
– Four pressure transducers (2 on feed system and 2 

chamber), load cell, data acquisition system and live video 
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Long-Grain Center-Perforated 
Hybrid Rocket Motory
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Typical videos of motor firings

Pure Paraffin

P ffi /MWNT

Paraffin/LiAlH4

Paraffin/MWNT
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Pressure-time traces from paraffin 
fuel grain containing 10% LiAlH4g g 4
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O/F ≈ 2.1
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Regression rates of various solid-
fuel formulations

The Aerospace Corporation 20The Pennsylvania State University 



Mass burning rates of various solid-
fuel formulations
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Conclusions

• Ball-milled LiAlH4 particle sizes were much smaller and fuel grains 
with LiAlH4 were very homogeneous

P t fi i i t l hi hl if– Post firing grain geometry was also highly uniform
• 10% LiAlH4 in paraffin showed 7-10% increase in regression rate 

over baseline paraffin (some increase due to lower density)
– 10% LiAlH4 fuel grain also had higher mass burn rates

• Casts with MWNT showed good distribution, but MWNT were 
often bundled together
– Fuel grain with 4% MWNT had slightly reduced regression 

rates, possibly due to increase in thermal conductivity
• RDX particles cast into paraffin wax using several casting p p g g

methods were too large to produce fuel grain for hybrid testing
– Safe procedure developed, but more work with 

RDX/DMF/Paraffin solubility limits is required
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Future work

• Continue testing Paraffin/LiAlH4 fuel grains with higher LiAlH4
concentrations (15 – 25%)

• Cast new grains for use in the larger hybrid system at PSU’s 
High Pressure Combustion Lab
– X-ray Translucent Center-perforated (XTC)

o Larger system means thicker web for longer burn
o X-ray diagnostics are conducive to accurate 

instantaneous fuel regression rate assessmentg
• Create Paraffin/MWNT samples for mechanical testing at 

University of Texas-Austin
• Generate fuel grains with carbon black in same percentage ofGenerate fuel grains with carbon black in same percentage of 

MWNT to compare burn rates
• Carry out additional experiments on solubility limits of 

RDX/DMF/paraffin to achieve a uniform mixture with small RDX
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RDX/DMF/paraffin to achieve a uniform mixture with small RDX 
particles uniformly dispersed in the paraffin wax matrix
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Questions?
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