391 research outputs found

    Estuary-associated syndrome in North Carolina: an occupational prevalence study.

    Get PDF
    Atlantic coast estuaries recently have experienced fish kills and fish with lesions attributed to Pfiesteria piscicida and related dinoflagellates. Human health effects have been reported from laboratory exposure and from a 1997 Maryland fish kill. North Carolina has recorded Pfiesteria-related fish kill events over the past decade, but human health effects from environmental exposure have not been systematically investigated or documented here. At the request of the state health agency, comprehensive examinations were conducted in a cross-sectional prevalence study of watermen working where Pfiesteria exposure may occur: waters where diseased or stressed fish were reported from June to September 1997, and where Pfiesteria had been identified in the past. Controls worked on unaffected waterways. The study was conducted 3 months after the last documented Pfiesteria-related fish kill. The goal was to document any persistent health effects from recent or remote contact with fish kills, fish with lesions, or affected waterways, using the 1997 U.S. Centers for Disease Control and Prevention case description for estuary-associated syndrome (EAS). Examinations included comprehensive medical, occupational, and environmental history, general medical, dermatologic, and neurologic examinations, vision testing, and neuropsychologic evaluations. Seventeen of 22 watermen working in affected waters and 11 of 21 in unaffected waters reported exposure to a fish kill or to fish with lesions. We found no pattern of abnormalities on medical, neurologic, neuropsychologic, or NES-2 evaluation. By history, one subject in each group met the EAS criteria, neither of whom had significant neuropsychological impairment when examined. Watermen from affected waterways had a significant reduction in visual contrast sensitivity (VCS) at the midspatial frequencies, but we did not identify a specific factor or exposure associated with this reduction. The cohorts did not differ in reported occupational exposure to solvents (qualitative) or to other neurotoxicants; however, exposure history was not sufficiently detailed to measure or control for solvent exposure. This small prevalence study in watermen, conducted 3 months after the last documented fish kill related to Pfiesteria, did not identify an increased risk of estuary-associated syndrome in those working on affected waterways. A significant difference between the estuary and ocean watermen was found on VCS, which could not be attributed to any specific factor or exposure. VCS may be affected by chemicals, drugs, alcohol, and several developmental and degenerative conditions; it has not been validated as being affected by known exposure to dinoflagellate secretions. VCS should be considered for inclusion in further studies, together with documentation or quantification of its potential confounders, to assess whether it has utility in relationship to dinoflagellate exposure

    To servitize is to (re)position : utilizing a Porterian view to understand servitization and value systems

    Get PDF
    Drawing on the case of a global servitizing company in the ship power industry, we use a Porterian toolkit for analyzing the implications of industry power and its consequences on firm vertical (re)positioning within the value system. Whereas repositioning has been seen as a way of moving closer to customers and obtaining new competencies, strategic moves aimed at increasing companiesā€™ sphere of influence were neglected. This chapter illustrates how the power approach to repositioning, through different alternative mechanisms, complements the widespread capability view and contributes to value system analysis in servitization.fi=vertaisarvioitu|en=peerReviewed

    Cluster Analysis of Symptoms Among Patients with Upper Extremity Musculoskeletal Disorders

    Get PDF
    Introduction Some musculoskeletal disorders of the upper extremity are not readily classified. The study objective was to determine if there were symptom patterns in self-identified repetitive strain injury (RSI) patients. Methods Members (nĀ =Ā 700) of the Dutch RSI Patients Association filled out a detailed symptom questionnaire. Factor analysis followed by cluster analysis grouped correlated symptoms. Results Eight clusters, based largely on symptom severity and quality were formulated. All but one cluster showed diffuse symptoms; the exception was characterized by bilateral symptoms of stiffness and aching pain in the shoulder/neck. Conclusions Case definitions which localize upper extremity musculoskeletal disorders to a specific anatomical area may be incomplete. Future clustering studies should rely on both signs and symptoms. Data could be collected from health care providers prospectively to determine the possible prognostic value of the identified clusters with respect to natural history, chronicity, and return to work

    Co-ordinated Airborne Studies in the Tropics (CAST)

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1The Co-ordinated Airborne Studies in the Tropics (CAST) project is studying the chemical composition of the atmosphere in the Tropical Warm Pool region to improve understanding of trace gas transport in convection. The main field activities of the CAST (Co-ordinated Airborne Studies in the Tropics) campaign took place in the West Pacific in January/February 2014. The field campaign was based in Guam (13.5Ā°N, 144.8Ā°E) using the UK FAAM BAe-146 atmospheric research aircraft and was coordinated with the ATTREX project with the unmanned Global Hawk and the CONTRAST campaign with the Gulfstream V aircraft. Together, the three aircraft were able to make detailed measurements of atmospheric structure and composition from the ocean surface to 20 km. These measurements are providing new information about the processes influencing halogen and ozone levels in the tropical West Pacific as well as the importance of trace gas transport in convection for the upper troposphere and stratosphere. The FAAM aircraft made a total of 25 flights between 1Ā°S-14Ā°N and 130Ā°-155Ā°E. It was used to sample at altitudes below 8 km with much of the time spent in the marine boundary layer. It measured a range of chemical species, and sampled extensively within the region of main inflow into the strong West Pacific convection. The CAST team also made ground-based measurements of a number of species (including daily ozonesondes) at the Atmospheric Radiation Measurement program site on Manus Island, Papua New Guinea (2.1Ā°S, 147.4Ā°E). This article presents an overview of the CAST project focussing on the design and operation of the West Pacific experiment. It additionally discusses some new developments in CAST, including flights of new instruments on the Global Hawk in February/March 2015.CAST is funded by NERC and STFC, with grant NE/ I030054/1 (lead award), NE/J006262/1, NE/J006238/1, NE/J006181/1, NE/J006211/1, NE/J006061/1, NE/J006157/1, NE/J006203/1, NE/J00619X/1, and NE/J006173/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1). P. I. Palmer acknowledges his Royal Society Wolfson Research Merit Award. The BAe-146-301 Atmospheric Research Aircraft is flown by Directflight Ltd and managed by the Facility for Airborne Atmospheric Measurements, which is a joint entity of the Natural Environment Research Council and the Met Office. The authors thank the staff at FAAM, Directflight and Avalon Aero who worked so hard toward the success of the aircraft deployment in Guam, especially for their untiring efforts when spending an unforeseen 9 days in Chuuk. We thank the local staff at Chuuk and Palau, as well as the authorities in the Federated States of Micronesia for their help in facilitating our research flights. Special thanks go to the personnel associated with the ARM facility at Manus, Papua New Guinea without whose help the ground-based measurements would not have been possible. Thanks to the British Atmospheric Data Centre (BADC) for hosting our data and the NCAS Atmospheric Measurement Facility for providing the radiosonde and ground-based ozone equipment. Chlorophyll-a data used in Figure 1 were extracted using the Giovanni online data system, maintained by the NASA GES DISC. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of this data set. Finally we thank many individual associated with the ATTREX and CONTRAST campaigns for their help in the logistical planning, and we would like to single out Jim Bresch for his excellent and freely provided meteorological advice
    • ā€¦
    corecore