1,912 research outputs found

    Quantum Bubble Nucleation beyond WKB: Resummation of Vacuum Bubble Diagrams

    Get PDF
    On the basis of Borel resummation, we propose a systematical improvement of bounce calculus of quantum bubble nucleation rate. We study a metastable super-renormalizable field theory, DD dimensional O(N) symmetric ϕ4\phi^4 model (D<4D<4) with an attractive interaction. The validity of our proposal is tested in D=1 (quantum mechanics) by using the perturbation series of ground state energy to high orders. We also present a result in D=2, based on an explicit calculation of vacuum bubble diagrams to five loop orders.Comment: 19 pages, 5 figures, PHYZZ

    Comorbidities, exposure to medications, and the risk of community-acquired clostridium difficile infection: a systematic review and meta-analysis

    Get PDF
    Background. Clostridium difficile infection (CDI) has been extensively escribedin healthcare settings; however, risk factor sassociated with community-acquired (CA) CDI remain uncertain. This study aimed to synthesize the current evidence for an association between commonly prescribed medications and comorbidities with CA-CDI. methods. A systematic search was conducted in 5 electronic databases for epidemiologicstudi esthatexamined the associtation between the presence of comorbidities and exposure to medications with the risk of CA-CDI. Pooled odds ratios were estimated using 3 meta-analytic methods. Subgroup analyses by location of studies and by life stages were conducted. results. Twelve publications (n=56,776 patients) met inclusion criteria. Antimicrobial (odds ratio, 6.18; 95% CI, 3.80-10.04) and corticosteroid (1.81; 1.15-2.84) exposure were associated with increased risk of CA-CDI. Among the comorbidities, inflammatory bowel disease (odds ratio, 3.72; 95% CI, 1.52-9.12), renal failure (2.64; 1.23-5.68), hematologic cancer (1.75; 1.02-5.68), and diabetes mellitus (1.15; 1.05-1.27) were associated with CA-CDI. By location, antimicrobial exposure was associated with a higher risk of CA-CDI in the United States, whereas proton-pump inhibitor exposure was associated with a higher risk in Europe. By life stages, the risk of CA-CDI associated with antimicrobial exposure greatly increased in adults older than 65 years. conclusions. Antimicrobial exposure was the strongest risk factor associated with CA-CDI. Further studies are required to investigate the risk of CA-CDI associated with medications commonly prescribed in the community. Patients with diarrhea who have inflammatory bowel disease, renal failure, hematologic cancer, or diabetes are appropriate populations for interventional studies of screening

    A 24 hour naproxen dose on gastrointestinal distress and performance during cycling in the heat

    Get PDF
    Using a double-blind, randomized and counterbalanced, cross-over design, we assessed naproxen's effects on gastrointestinal (GI) distress and performance in eleven volunteers (6 male, 5 female). Participants completed 4 trials: 1) placebo and ambient); 2) placebo and heat; 3) naproxen and ambient; and 4) naproxen and heat. Independent variables were one placebo or 220 mg naproxen pill every 8 h (h) for 24 h and ambient (22.7 ± 1.8°C) or thermal environment (35.7 ± 1.3°C). Participants cycled 80 min at a steady heart rate then 10 min for maximum distance. Perceived exertion was measured throughout cycling. Gastrointestinal distress was assessed pre-, during, post-, 3 h post-, and 24 h post-cycling using a GI index for upper, lower, and systemic symptoms. No statistically significant differences occurred between conditions at any time for GI symptoms or perceived exertion, distance, or heart rate during maximum effort. A 24 h naproxen dose did not significantly affect performance or cause more frequent or serious GI distress when participants were euhydrated and cycling at moderate intensity in a thermal environment

    Paraneoplastic thrombocytosis in ovarian cancer

    Get PDF
    &lt;p&gt;Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that platelets play in abetting cancer growth are unclear.&lt;/p&gt; &lt;p&gt;Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse models of epithelial ovarian cancer were used to explore the underlying mechanisms of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.&lt;/p&gt; &lt;p&gt;Results: Thrombocytosis was significantly associated with advanced disease and shortened survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated in patients who had thrombocytosis as compared with those who did not. In mouse models, increased hepatic thrombopoietin synthesis in response to tumor-derived interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor growth and angiogenesis.&lt;/p&gt; &lt;p&gt;Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have therapeutic potential. &lt;/p&gt

    Principles and Guidelines for Evaluating Social Robot Navigation Algorithms

    Full text link
    A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to as social robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this paper, we pave the road towards common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.Comment: 43 pages, 11 figures, 6 table

    Differential Platelet Levels Affect Response to Taxane-Based Therapy in Ovarian Cancer

    Get PDF
    We hypothesized that platelet levels during therapy could serve as a biomarker for response to therapy and that manipulation of platelet levels could impact responsiveness to chemotherapy

    Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    Get PDF
    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. © 2014 Hogg et al

    The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

    Get PDF
    Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine’s clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
    corecore