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Abstract

Purpose—We hypothesized that platelet levels during therapy could serve as a biomarker for 

response to therapy and that manipulation of platelet levels could impact responsiveness to 

chemotherapy.
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Experimental Design—The medical records of patients with recurrent or progressive ovarian 

cancer were retrospectively queried for changes in platelet and CA-125 levels during primary 

therapy. In vitro co-culture experiments and in vivo orthotopic models of human ovarian cancer in 

mice were used to test the effect of modulating platelet levels on tumor growth and responsiveness 

to docetaxel.

Results—Thrombocytosis at the diagnosis of ovarian cancer correlated with decreased interval to 

progression (p = 0.05) and median overall survival (p = 0.007). Mean platelet levels corrected 

during primary therapy and rose at recurrence. Contrary to treatment-responsive patients, in a 

cohort of patients refractory to primary therapy, platelet levels did not normalize during therapy. 

In A2780, HeyA8, and SKOV3-ip1 ovarian cancer cell lines, platelet co-culture protected against 

apoptosis (p < 0.05). In orthotopic models of human ovarian cancer, platelet depletion resulted in 

70% reduced mean tumor weight (p < 0.05). Compared to mice treated with docetaxel, mice 

treated with both docetaxel and platelet-depleting antibody had a 62% decrease in mean tumor 

weight (p = 0.04). Platelet transfusion increased mean aggregate tumor weight 2.4-fold (p < 0.05), 

blocked the effect of docetaxel on tumor growth (p = 0.55) and decreased tumor cell apoptosis. 

Pre-transfusion aspirinization of the platelets blocked the growth-promoting effects of transfusion.

Conclusions—Platelet-driven effects of chemotherapy response may explain clinical 

observations.
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INTRODUCTION

Thrombocytosis, defined as >450,000 cells/μL, is found in over 30% of epithelial ovarian 

cancer patients and is associated with decreased progression-free and overall survival. (1) 

Paraneoplastic thrombocytosis, in addition to hypercalcemia, leukocytosis, and cachexia, has 

been shown to occur through the generation of IL-6. (1, 2) IL-6 expression correlates with 

ovarian cancer taxane sensitivity. (3) Platelet transfusion leads to increased tumor cell 

proliferation. (2) Recent clinical work supports the relationship between thrombocytosis and 

poor prognosis in ovarian cancer. (4, 5)

The connection between platelets and metastasis is established. (6–14) Platelets have been 

shown to mediate protection of micrometastases from natural-killer-cell-mediated clearance. 

(15) Direct signaling between platelets and tumor cells contributes to the epithelial-to-

mesenchymal transition. (16) The role for platelets in metastasis has proven multifactorial, 

including platelet-tumor interactions involving multiple protein classes and functions. (17–

21)

Exposure of human adenocarcinoma cells to platelets increases survival, proliferation, and in 

vitro chemoresistance through the upregulation of anti-apoptotic pathways, down-regulation 

of pro-apoptotic pathways, promotion of DNA synthesis, increased cyclin expression, 

increased DNA repair protein expression, and increased MAPK expression. (22) Induction 

of thrombocytopenia in a murine model of breast carcinoma results in greater taxane 
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efficacy that correlates with and increased vascular leakage at the tumor site. (23) Platelets 

sequester and differentially release angiogenic and mitogenic mediators. (24–28) Release of 

alpha-granule contents and platelet-driven neutrophil chemotaxis are variable based on pH, 

suggesting a complex regulatory function. (29) Dense granules release agents known to 

modulate cell growth and migration. (30)

Considering the growing evidence for correlation between platelet levels and clinical 

outcomes, we considered whether platelet levels could serve as a biomarker of treatment 

response. We considered, using in vitro and pre-clinical in vivo models, whether modulation 

of platelet levels could influence response to chemotherapy and whether such effects could 

be blocked to improve sensitivity to taxane-based chemotherapy.

METHODS

Approvals

Approval for relevant studies was obtained from the University of Texas at M.D. Anderson 

Cancer Center Institutional Review Board (IRB). All animal experiments were approved and 

supervised by the MDACC Institutional Animal Care and Use Committee.

Clinical Analysis

Patients were retrospectively identified at the University of Texas at M.D. Anderson Cancer 

Center (MDACC), the University of Iowa, and the University of Virginia who were 

diagnosed with ovarian, primary peritoneal, or fallopian tube carcinoma. This database was 

partially overlapping with that reported by Stone, et al. (1) Patients were excluded if they did 

not receive primary therapy or follow-up at the institution of record. In order to explicitly 

focus on patterns of recurrence and progression, patients were excluded who did not recur or 

progress. Exclusions were made for a history of other malignancy, myeloproliferative 

disease, inflammatory disease, splenectomy, or other confounding cause of thrombocytosis. 

All patients were treated by surgical cytoreduction performed by a gynecologic oncologist in 

addition to adjuvant or neoadjuvant taxane- and/or platinum-based chemotherapy. Clinical 

data collected included patient demographics, tumor characteristics, details of treatment, and 

outcomes data. Platelet levels and CA-125 measurements were recorded at the time of 

primary evaluation, through therapy, after the completion of surgery and 6 cycles of 

cytotoxic chemotherapy, during the post-therapy monitoring period, and at the time of 

diagnosis of ovarian cancer recurrence. Thrombocytosis was defined as a platelet count 

greater than 450,000/μL. (31) Interval to progression was defined starting at the conclusion 

of six cycles of primary therapy and ending at the clinical diagnosis of recurrence by 

physical exam, laboratory evaluation, and/or imaging. The survival interval was also defined 

as starting at the conclusion of six cycles of primary chemotherapy. Patients who were 

known to be alive at the time of last contact were censored accordingly.

Pre-Clinical Analysis

Docetaxel—Docetaxel (Sanofi-Aventis, Paris, France) is a commonly used taxane 

chemotherapy shown in phase III clinic trials to be equivalent to paclitaxel in the primary 

therapy of ovarian cancer. (32) Docetaxel was obtained from surplus clinical samples from 
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the clinical pharmacy associated with the University of Texas M.D. Anderson Cancer 

Center.

Cell lines and culture conditions—The derivation of the human ovarian cancer cell 

lines A2780, HeyA8, and SKOV3-IP1 are previously reported. (33) Cell lines were obtained 

from the institutional Cell Line Core laboratory and per institutional policy (MD Anderson 

policy ACA#1044) cell line authentication was performed at least once per year. In this 

case, authentication was performed within six months of the work described. Authentication 

was performed by the short tandem repeat method using the Promega Power Plex 16HS kit 

(Promega™, Madison, WI). Somatic mutations were detected using a Sequenom MALDI 

TOF MassArray system (Sequenom™, San Diego, CA). Mycoplasma detection was 

performed using the MycoAlert kit (Lonza™, Basel, Switzerland). The cell lines were 

maintained in RPMI-1640 with 15% fetal bovine serum. Cell lines were routinely genotyped 

to confirm identity and tested to confirm absence of Mycoplasma. Cells were maintained at 

37°C in a humidified incubator infused with 20% O2 and 5% CO2.

Platelet isolation for in vitro assays

Platelets were prepared for in vitro assays in a manner that would remove plasma contents 

and nucleated cells. Whole blood was drawn from the inferior vena cava of anesthetized 

nude mice into a syringe pre-loaded with 1:9 v/v 3.8% sodium citrate and mixed 1:1 v/v 

with tyrodes buffer lacking Mg2+ and Ca2+. Blood was centrifuged at 1100 rpm for 3 

minutes, twice, at room temperature. The platelet-rich plasma fraction was passed through a 

filtration column of Sepharose 2B beads (Sigma Aldrich, St Louis, MO) loaded into a 

siliconized glass column with a 10 μm nylon net filter (Millipore, Billerica, MA) and 

sepharose 2B beads previously washed in acetone 1:1 v/v, followed by 0.9% NaCl 1:1 v/v, 

and “Buffer 1” 1:1 v/v. Platelet-containing eluent was diluted 1:200 and platelets were 

counted with a hemocytometer by phase-contrast microscopy at 400x magnification.

In vitro assays

To examine potential effects of platelets on apoptosis and response to chemotherapy, we 

incubated cancer cells with platelets using a tissue co-culture system and observed 

consistent protection against apoptosis. To assess the effect of platelets on apoptosis, cells 

were plated in 6-well plates at 50,000 cells per plate. At 50% confluence, media was 

changed to serum-free for 24-hours prior to starting treatment. After serum-starvation, 

platelets were isolated and added to achieve a final dose of 1 × 108 platelets/mL. Docetaxel 

was dosed at 5 μM based on previously published IC50 levels. Controls utilized an 

equivalent volume of the appropriate buffer. All treatments were performed in triplicate. 

After 72 hours of platelet and docetaxel exposure, cell viability was assessed using Annexin 

V and 7-amino-actinomycin-D (7AAD) staining (BD Pharmingen™, Franklin Lakes, NJ) by 

flow cytometry. Indirect mediation of effect was considered by the use of an intervening cell 

culture insert with 0.4 μm pores (BD Falcon™, Franklin Lakes, NJ).

Proliferation was measured by flow cytometry (Click-iT EdU kit, Invitrogen, Carlsbad, CA). 

For platelet fixation experiments, plasma-free platelets were incubated in 1% 

paraformaldehyde. (2) To test the effect of aspirin in this system, a 325 mg tablet of aspirin 
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was dissolved in deionized, distilled water and filter-sterilized. Cancer cells were plated, 

plasma-free platelets were isolated and co-incubated with aspirin 30 μM, and in vitro 

experiments were performed as described. Internal controls (n = 3) were performed for each 

experiment given the variability in baseline apoptosis and proliferation rates seen between 

experiments in order to avoid batch error.

Orthotopic model of ovarian cancer in nude mice

Female athymic nude (NCr-nu) were purchased from Taconic Farms, Inc. (Rockville, MD). 

The development and characterization of the orthotopic mouse model of ovarian cancer has 

been previously described. (34) SKOV3-IP1 (1 × 106 cells/mouse), A2780 (1 × 106 cells/

mouse), or HeyA8 (0.25 × 106 cells/mouse) were lifted with trypsin/EDTA, washed with 

PBS, and re-suspended in 200 μL of Hank’s balanced salt solution (HBSS, Mediatech, Inc. 

Manassas, VA) and were injected into the peritoneal cavity of female nude mice.

Platelet-depleting antibody

To deplete platelets in mice for in vivo experiments, we used a commercially available rat 

anti-mouse monoclonal antibody directed against mouse GP1b-alpha (CD42b, Emfret 

Analytics, Eibelstadt, Germany) that causes irreversible Fc-independent platelet depletion 

within 60 minutes of administration without inducing platelet activation. Dose-kinetics are 

previously validated. (1)

Thrombocytosis, thrombocytopenia, and effect on chemotherapy in vivo

The cell lines A2780 and SKOV3-IP1 were used in the orthotopic model of nude mice. The 

animals were injected with tumor on Day 0 as described above. Starting on Day 7, animals 

were randomized and treated: twice weekly tail vein injections of Control IgG (0.5 mcg/

gram); twice weekly Control IgG via tail vein injection and weekly docetaxel 35 mcg IP; 

platelet-depleting antibody (0.5 mcg/gram) via tail vein injection twice weekly; platelet-

depleting antibody plus docetaxel; tail vein transfusion of platelet rich plasma isolated from 

nude mice; platelet transfusion and docetaxel. Mice were treated until they became 

moribund and then sacrificed.

Aspirinization of platelets

Pharmacy grade aspirin was acquired, and a single 325 mg table was dissolved in 500 mcM 

sodium acetate (pH 5.6). This was added 1:10 v/v to platelet rich plasma and the 

combination was incubated at 37°C for 15 minutes. Incubation with an equivalent sodium 

acetate solution without aspirin was used for control.

Effect of aspirin on thrombocytosis and malignancy in vivo

Using the A2780 orthotopic model of ovarian cancer, mice were injected with tumor on Day 

0. On Day 7, the animals were randomized and treated: untreated control; intraperitoneal 

aspirin 20 mg/kg twice per week; 500 μL of platelet rich plasma isolated from nude mice 

and incubated with sodium acetate for 15 minutes (as described above) via tail vein injection 

weekly; tail vein transfusion of platelet rich plasma that had been incubated for 15 minutes 
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with a 50 μM solution of aspirin in sodium acetate (as described above). Mice were treated 

until they became moribund and then sacrificed.

Cleaved caspase 3 immunohistochemistry

Immunohistochemistry for cleaved caspase 3 was used to measure apoptotic rates in ex vivo 

tumor using a rabbit polyclonal anti-human antibody to cleaved caspase 3 (BioCare Medical, 

Concord, CA, #CP229B). Paraffin embedded tumor sections were heated, deparaffinized, 

and antigen retrieval was performed by steaming, and endogenous peroxides were blocked 

with 3% hydrogen peroxide in methanol. Non-specific proteins were blocked with 4% fish 

gelatin in PBS. Slides were incubated in primary antibody (1:100), and the secondary 

antibody (ready-to-use) was followed by streptavidin HRP (ready-to-use). Slides were 

quantified by counting the number of positively-staining cells per 200x field.

Statistical considerations

A 2-sided long-rank statistic was used to compare Kaplan-Meier survival curves. Variables 

estimated to have a normal distribution were compared using the Student’s T-Test using 

Excel (Microsoft®, Redmond, Washington). The F-Test was used to compare variances 

where indicated. A p-value of <0.05 was considered statistically significant. For mouse 

experiments, sample size was estimated utilizing a two-way ANOVA model. For an effect 

size of 0.65, a sample size of 10 mice per group was considered sufficient to provide 80% 

power for α = 0.05 anticipating less than 10 groups.

RESULTS

Thrombocytosis is associated with resistance to chemotherapy

We first identified patients known to have recurrent or progressive epithelial ovarian cancer 

(n = 355) for whom adequate laboratory data prior to treatment, treatment data, and post-

treatment follow-up data was available. Demographics (Supplemental Table 1) indicated a 

median age 61 years (range 31–88 years). Ninety percent had advanced stage (III or IV) and 

89% had high-grade disease. For primary therapy, all patients underwent a combination of 

surgical cytoreduction (60% had “optimal” cytoreduction to <1cm gross residual disease) 

and taxane-based chemotherapy, most commonly paclitaxel and carboplatin. In this 

population, in which all patients developed disease recurrence, the mean platelet level was 

409,000/μL (range 134,000–1,122,000 cells/μL) at diagnosis. Thirty-two percent had a mean 

platelet level of >450,000 cells/μL at the time of diagnosis. Even after patients without 

diagnosed recurrence were excluded, thrombocytosis at diagnosis was associated with worse 

median progression free survival (12.9 vs. 14.7 months, p = 0.05, figure 1A) and median 

overall survival (16 vs. 20.8 months, p = 0.007, figure 1A).

A subgroup of 96 patients was identified whose available laboratory data were adequate to 

consider platelet and CA-125 trends through primary diagnosis, primary treatment, 

surveillance, and until the clinical diagnosis of recurrence. (Figure 1B, Supplemental Table 

2). CA-125 is a standard tumor marker followed in ovarian cancer to track the efficacy of 

primary therapy and in surveillance for recurrence. In this group of patients, only 86% of 

patients had a normal CA-125 level (<35 units/mL) at the conclusion of primary therapy. In 
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contrast, all patients had a normal platelet count <450,000 cells/μL (mean 206,000 cells/μL) 

after primary therapy. At the clinical diagnosis of disease recurrence or progression, CA-125 

was elevated in 75% of patients. In parallel, at the diagnosis of recurrence, mean platelet 

counts were found to be increased 57.8% to 262,000 cells/μL compared to nadir levels found 

after primary therapy was completed (p<0.001, figure 1B, Table 2). Among patients with a 

CA-125 <35 units/mL at the time of recurrence, platelet levels were increased by 49% 

(mean increase 108,400 cells/μL, p<0.01) at the diagnosis of recurrence compared to the 

conclusion of primary therapy.

Among ovarian cancer patients, approximately 10% will not respond to primary therapy and 

are considered to have “refractory” disease. From the 96 patients with complete longitudinal 

data, 10 patients were identified who had disease refractory to primary treatment. Ten 

additional patients (matched for stage, grade, histology, and primary therapy) were 

identified for comparison who experienced a complete response to primary therapy that was 

durable for at least 6 months. In the patients who experienced a compete response to therapy 

that was durable for >6 months, 50% had thrombocytosis at diagnosis, and all of these 

patients consistently normalized platelet levels by the end of primary therapy (figure 1C). In 

the treatment-refractory cohort, all patients had thrombocytosis at the time of diagnosis, and 

platelet levels were far more heterogeneous during primary therapy, with only 50% having 

normalized platelet counts by the completion of primary therapy (figure 1C). These data 

suggest a correlation between the normalization of platelet counts during primary therapy 

and disease response to that therapy.

Platelets mediate resistance against chemotherapy-induced apoptosis in vitro

Tissue co-culture with platelets demonstrated consistent protection against apoptosis, both 

directly and indirectly, and with and without exposure to docetaxel. Platelet activation was 

evident by the aggregation of platelets within the initial hours of 37°C incubation. Direct 

incubation of the A2780, HeyA8, and SKOV3-ip1 cells with platelets in serum-free 

conditions reduced apoptosis 46.7% (p = 0.002), 64.4% (p < 0.001), and 47.3% (p = 0.004) 

respectively (figure 2A). After incorporating docetaxel, direct incubation of the same cell 

lines with platelets reduced apoptosis by 20.4% (p = 0.004), 74.0% (p < 0.001), and 15.1% 

(p = 0.007) respectively (figure 2A). To consider whether direct contact between platelets 

and tumor cells was required to observe these changes in apoptotic rates, ovarian cancer 

cells were indirectly incubated with platelets across a barrier with 0.4 μm pores for 72 hours 

in a serum free environment with and without docetaxel 5 nM. Indirect incubation of A2780, 

HeyA8, SKOV3-ip1, and 2774 cells with platelets in serum-free conditions reduced 

apoptosis by 60.8% (p < 0.001), 80.7% (p = 0.001), 82.3% (p < 0.001), and 25.3% (p = 

0.002), respectively (figure 2B). After incorporating docetaxel, direct incubation of the same 

cell lines with platelets reduced apoptosis by 17.4% (p < 0.001), 31.9% (p < 0.001), 33.9% 

(p < 0.001), and 27.5% (p = 0.03), respectively (figure 2B). These data suggest that platelets 

have an anti-apoptotic effect on cancer cells, and they suggest that this effect does not 

require direct contact between platelets and tumor cells.

To determine whether platelet activation was necessary for the apoptosis protection, the 

above experiments were repeated using platelets fixed with paraformaldehyde. Fixation of 
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platelets abrogated the anti-apoptotic effect (p = 0.28, figure 2C), suggesting that platelet 

activation is necessary for the anti-apoptotic effects. Platelet co-culture has previously been 

shown to induce increased tumor cell proliferation, which was abrogated by platelet fixation. 

(2) Acknowledging that aspirin is a moderate inhibitor of platelet activation that can be 

overcome by adequate accumulation of adenosine di-phosphate (ADP), and given that ADP 

accumulates in vitro over time, aspirin pre-treatment of platelets was utilized to block the 

pro-proliferative effects of platelets in vitro. The cell line SKOV3-ip1 was co-cultured with 

platelets with and without aspirin 30 μM for 24 hours and evaluated by flow cytometry for 

EdU incorporation as a proxy for proliferation. As anticipated, platelet co-culture increased 

proliferation by 56.5% (p = 0.004). Inclusion of aspirin abrogated the effect of platelet co-

culture (figure 2C)

Effects of platelets on tumor growth and response to chemotherapy in vivo

All ovarian cancer cell lines utilized here are known to cause increased platelet counts. (1) 

To simulate the effects of excess platelet volume, allogeneic platelet transfusions were 

performed. Noting that platelet activation was apparently necessary for the anti-apoptotic 

effects in vitro, we considered whether in vivo effects from platelet transfusion might be 

blocked by utilizing aspirin. Nude mice were given IP injections of A2780 cells, and 7 days 

later, they were randomized to the following treatment groups (n = 10 mice/group): 

untreated control, IP aspirin, platelet transfusion, and aspirinized platelet transfusion. 

Platelet transfusion resulted in a 1.9-fold increase in the aggregate mean tumor weight 

compared to control (p = 0.01; figure 3A). Intraperitoneal aspirin therapy did not have any 

significant effect on aggregate tumor weight. In contrast, pre-aspirinization of the platelets 

blocked the pro-growth effect of platelet transfusion (p = 0.01 compared to platelet 

transfusion; p = NS compared to control; figure 3A).

In resected tumor specimens, ex vivo immunohistochemistry demonstrated that platelet 

transfusion resulted in a 37% lower rate of apoptosis (activated caspase-3 

immunohistochemistry) compared to control (p = 0.009; figure 3B). Aspirin delivered IP did 

not significantly change the apoptotic rate in tumor (p = 0.86; figure 3B). In contrast, 

aspirinizing platelets prior to transfusion blocked the anti-apoptotic effect of platelets on 

tumor (p = 0.11; figure 3B).

We next studied the effect of platelets on response to taxane-based chemotherapy in vivo by 

reducing platelet counts using an anti-platelet antibody (APA) that causes non-activating 

sequestration of circulating platelets and has been previously validated in our laboratory. (1) 

Seven days following IP injection of A2780 cancer cells, mice were randomized to the 

following treatment groups: control IgG, APA, control IgG with docetaxel, or APA with 

docetaxel. After five weeks, mice treated with either APA had 65% decrement in mean 

aggregate tumor weight compared to control (p = 0.008, figure 4A) that was similar to the 

70% decrease that resulted from treatment with docetaxel (p = 0.004, figure 4A). There was 

no statistical difference between the APA treatment and docetaxel treatment (p = 0.35, 

figure 4A). By comparison, mice treated with both the APA and docetaxel had an additional 

62% reduction in aggregate tumor weight compared to that achieved by docetaxel alone (p = 

0.04, figure 4A).
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To confirm this finding and consider the effect of platelet transfusion, nude mice were given 

IP injections of SKOV3-ip1 cells, and after seven days were randomized to the following 

groups: control IgG, APA, twice weekly platelet transfusion, control IgG with docetaxel, 

APA with docetaxel, and platelet transfusion with docetaxel. Platelet depletion and 

docetaxel resulted in similar reductions in tumor size at necropsy (figure 4B). Mice given 

platelet transfusions had a 2.4-fold increase in mean aggregate tumor weight compared to 

controls (p = 0.01, figure 4B). Compared to mice treated with docetaxel, treatment with 

docetaxel and platelet transfusion resulted in a 4-fold increase in mean aggregate tumor 

weight (p = 0.004, figure 4B). Mice given platelet transfusions and treated with docetaxel 

had a similar mean aggregate tumor weight to that of untreated controls (p = 0.55, figure 

4B). Compared to mice treated with docetaxel, mice treated with APA and docetaxel had a 

51% decrease in mean tumor weight (p = 0.02, figure 4B). In a confirmatory experiment 

using the SKOV3-ip1 model, the animals were randomized to control IgG, twice weekly 

platelet transfusion, or platelet transfusion with APA. Platelet transfusion resulted in a 70% 

increase in mean aggregate tumor weight (p = 0.001, figure 4C) whereas the combination of 

platelet transfusion with APA resulted in a non-significant decrease in mean aggregate 

tumor weight compared to control (p = 0.06, figure 4C).

DISCUSSION

It is increasingly recognized that there are multiple biological components that participate in 

a cooperative relationship between the host and tumor cells. Cross-talk between various cell 

types, including platelets, leukocytes, and endothelial cells, has been shown to participate in 

the epithelial-to-mesenchymal transition, metastasis, as well as arrest of tumor emboli with 

the establishment of the metastatic niche. (16, 35) Platelets have been shown to sequester 

angiogenesis regulators in addition to other mitogens (24) and release these compounds 

from alpha-granules in a manner that modulates angiogenesis. (36) There is evidence that 

exposure to anticoagulants decreases platelet release of vascular endothelial growth factor, 

suggesting anticoagulants may alter the potential of platelets to facilitate angiogenesis. (37)

In a cohort of patients enriched for recurrence of disease, we found that elevated platelet 

levels correlated with a decreased interval to progression and decreased overall survival. 

Overall survival as a trial end-point is influenced by therapeutic crossover; therefore it is 

notable that thrombocytosis correlates with worsened overall survival, suggesting that 

platelet effects may be agnostic to the types of therapy used. Furthermore, we demonstrated 

that platelet counts might be useful as a tumor marker, in parallel to CA-125 levels, to 

follow treatment response and follow in surveillance for recurrence. These data were limited 

by provider variation in the frequency of both CA-125 and CBC checks. Standardization as 

well as prospective analysis could allow the development of prospective algorithms to test 

for the predictive value of platelet response as a biomarker for tumor response.

In breast cancer models, chemotherapy was found to be more effective in the context of 

thrombocytopenia, and the effect was attributed to intra-tumoral hemorrhage facilitated by 

leukocytes and deficiency in β-2 or β-3 integrins. (26, 38) Based on our observation in 

patients with ovarian cancer that elevated platelet counts are associated with higher rates of 

relapse and lower rates of response to chemotherapy, we hypothesized and confirmed that 
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platelets might confer resistance to apoptosis, including that induced by taxane 

chemotherapy. Co-incubation resulted in obvious platelet aggregation, and blockade of 

activation abrogated these effects. Aspirin at least partially blocked the increased tumor cell 

proliferation attributed to platelet co-culture.

A series of meta-analyses of randomized and case-control studies have indicated a 

significantly reduced risk of malignancy in individuals treated with low-dose aspirin. (39–

42) In our model, platelet transfusion resulted in accelerated tumor growth that was partially 

blocked by pre-treatment of the platelets with aspirin, however IP administration of aspirin 

did not have a clear effect. Aspirin is a moderate inhibitor of platelet activation and 

aggregation, and it is known that other activating stimuli (e.g. shear force, catecholamines, 

thrombin, and ADP) are capable of activating platelets despite aspirinization through non-

thromboxane-dependent mechanisms. (43) The IP dose utilized here may not have been 

adequate to overcome these mechanisms. Alternatively, it may be the case that aspirin only 

provides an observable effect above a threshold number of platelets.

The potential impact of platelet transfusion on cancer progression or survival has not been 

well studied. Concern has been identified that erythropoiesis-simulating agents are 

associated with decreased tumor progression and survival. (44–46) In this context, some 

centers are exploring the effects of agents such as romiplostim (a thrombopoietin receptor 

agonist) to maintain platelets >100 × 109/L in patients being treated with cytotoxic 

chemotherapy. Limited data report a 15% DVT rate and are not adequate to consider impact 

on progression and/or survival. (47) Our model would suggest that care should be taken 

when platelet transfusions are considered and as thrombopoietin receptor agonists are 

developed to carefully consider the possibility of stimulating tumor growth through the 

intervention.

We further demonstrated that reduction of platelet counts in vivo reduced tumor growth to 

the same extent as chemotherapy, and platelet transfusion strongly counter-acted the 

antitumor effect of chemotherapy. Thrombocytopenia is a common toxicity of front-line 

chemotherapy, and clinical trials will decline to enroll, delay therapy, or remove patients 

from protocols based on persistent platelet levels less than 10×105 cell/μL. (48) The effect of 

relative thrombocytopenia and platelet transfusion on the response to chemotherapies needs 

to be investigated in a larger number of patients in a controlled setting. If our results are 

confirmed, the risks of platelet transfusion in a patient population may be greater than 

previously thought. Further, relative thrombocytopenia may be of therapeutic benefit, and 

within carefully defined safety parameters, the use of anti-platelet reagents may be 

considered as chemosensitizers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE

Thrombocytosis is known to correlate with poor clinical outcomes in cancer, is known to 

be caused by tumor cells, and platelets are known to participate in metastasis. In this 

work, we show that in patients with recurrent ovarian cancer, elevated platelet levels at 

diagnosis correlated with decreased interval to progression and decreased overall 

survival. Changes in platelet levels during and after therapy may be a biomarker for 

response to that therapy and recurrence. Platelets protect ovarian cancer cells from 

apoptosis in a manner not requiring direct contact. Platelet transfusion results in 

increased tumor growth that can be at least partially blocked with aspirin. Further, 

platelet transfusion decreases the efficacy of taxane-based chemotherapy and platelet 

depletion increases the efficacy of the same therapy. These models argue for 

reconsideration of the dangers of platelet transfusion and thrombopoietin receptor 

agonists as well as the consideration of anti-platelet reagents as chemosensitizers.
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Figure 1. 
A. Patients with recurrent ovarian cancer (n = 341) were identified and stratified according 

to their platelet counts at diagnosis into two groups: those with thrombocytosis (>450,000 

cells/μL) and those with normal platelet counts (<450,000 cells/μL). The patients with 

thrombocytosis at the time of diagnosis had a significantly shorter median interval to 

progression (12.9 vs. 14.7 months, p = 0.05). The patients with thrombocytosis at the time of 

diagnosis had a significantly shorter median overall survival (16 vs. 20.8 months, p = 0.007).

B. Patients with recurrent ovarian cancer for whom longitudinal data was available through 

treatment and surveillance (n = 96). The mean platelet level at diagnosis was 403,000 

cells/μL. During primary therapy, the mean platelet nadir was 198,000 cells/μL. At the 

conclusion of therapy, the average platelet level was 221,000 cells/μL, and this remained 

stable in the surveillance period, with the mean nadir 166,000 cells/μL during this time. At 

recurrence, mean platelet levels increased 27% to 262,000 cells/μL (p < 0.001). Of the 

patients with available longitudinal data, the mean level at diagnosis was 332 units/mL 

(normal <35 units/mL). Only 86% had a normal CA-125 level at the conclusion of primary 

therapy with a mean 63 units/mL, and the mean post-treatment nadir was 23 units/mL. At 

the clinical diagnosis of disease recurrence, CA-125 was elevated in 75% of patients, with a 

median 229 units/mL.

C. A subgroup of the patients with complete longitudinal data was identified who 

experienced progression of disease through first-line therapy (n = 10). These patients were 

matched to a cohort who experienced a durable response to therapy lasting more than 6 

months. In the subgroup of patients with a durable response, only 50% had thrombocytosis 

(>450,000 cells/μL) at the time of diagnosis, and all patients in this subgroup achieved 

normal platelet counts during therapy. In the treatment-refractory cohort, all patients had 

thrombocytosis at the time of diagnosis, and platelet levels were more heterogeneous during 

Bottsford-Miller et al. Page 15

Clin Cancer Res. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



primary therapy, with only 50% having normalized platelet counts by the completion of 

primary therapy.
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Figure 2. 
A. In vitro, A2780 directly co-cultured with platelets (plt) 10×107/mL +/− docetaxel 5 nM, 

platelets decreased apoptosis from 10.7% to 5.7% (p = 0.004) compared to serum free media 

(SFM). With the addition of docetaxel, platelets decreased apoptosis from 46.6% to 37.1% 

(p = 0.007). HeyA8 directly co-cultured with platelets +/− docetaxel, platelets decreased 

apoptosis from 21.8% to 7.8% (p < 0.001) compared to serum free media. With the addition 

of docetaxel, platelets decreased apoptosis from 28.6% to 7.5% (p < 0.001). SKOV3-ip1 

directly co-cultured with platelets +/- docetaxel, platelets decreased apoptosis from 17.1% to 

9.0% (p = 0.008) compared to serum free media. With the addition of docetaxel, platelets 

decreased apoptosis from 70.1% to 59.5% (p = 0.013).

B. In vitro, A2780 indirectly co-cultured with platelets +/− docetaxel, platelets decreased 

apoptosis from 48.5% to 19.0% (p < 0.001) compared to serum free media (SFM). With the 

addition of docetaxel, platelets decreased apoptosis from 70.4% to 58.2% (p < 0.001). 

HeyA8 indirectly co-cultured with platelets +/− docetaxel, platelets decreased apoptosis 

from 46.1% to 8.9% (p < 0.001) compared to serum free media. With the addition of 
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docetaxel, platelets decreased apoptosis from 75.8% to 51.6% (p = 0.001). SKOV3-ip1 

indirectly co-cultured with platelets +/− docetaxel, platelets decreased apoptosis from 34.3% 

to 6.1% (p < 0.001) compared to serum free media. With the addition of docetaxel, platelets 

decreased apoptosis from 60.8% to 40.2% (p = 0.001). 2774 indirectly co-cultured with 

platelets +/− docetaxel, platelets decreased apoptosis from 9.9% to 7.4% (p = 0.003) 

compared to serum free media. With the addition of docetaxel, platelets decreased apoptosis 

from 25.9% to 18.8% (p = 0.033).

C. In vitro, HeyA8 cells were incubated in SFM, platelets, and buffer from platelet washing 

after paraformaldehyde fixation, and paraformaldehyde-fixed platelets. Normal platelets 

decreased apoptosis from 9.6% to 3.3% (p < 0.001). In contrast, platelet fixation had no 

significant effect on tumor cell apoptosis (10.4%, p = 0.28). SKOV3-ip1 cells were 

incubated with SFM, platelets, and/or aspirin (ASA) 30 μM. EdU incorporation was used to 

measure proliferation by flow cytometry. Platelet co-culture increased proliferation from 

21.8% to 34.1% (p = 0.004) while aspirin had no effect. When ASA was added to the 

platelets, the degree of proliferation was decreased to 27.3% (p = 0.22 compared to SFM 

control).
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Figure 3. 
A. In vivo, A2780-bearing nude mice were allocated into the following groups (n = 10): 

untreated control, IP aspirin, platelet transfusion, and transfusion of aspirinized platelets. 

Aspirin by itself had no significant effect on mean aggregate tumor weight at necropsy. 

Platelet transfusion increased mean aggregate tumor weight from 2.1 g to 4.1 g (p = 0.03). 

Pre-transfusion aspirinization of platelets abrogated the increased tumor growth (2.1 g 

versus 2.1 g, p = NS).

B. Immunohistochemistry for cleaved caspase-3 demonstrated reduction in apoptosis in 

tumors of mice receiving platelet transfusion from 28.1/hpf to 17.6/hpf (p = 0.009). Pre-

transfusion aspirinization of platelets decreased the reduction of apoptosis to 22.2% (p = 

0.11 compared to control). IP ASA had no statistically significant effect on the rate of 

apoptosis.
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Figure 4. 
A. In vivo, A2780-bearing nude mice were treated with a control IgG, a platelet-depleting 

IgG anti-platelet antibody (APA), docetaxel, or a combination of the docetaxel and APA. 

Animals treated with APA had a 65% decrease in mean aggregate tumor weight compared 

to control (p = 0.008) that was similar to the 70% decrease that resulted from treatment with 

docetaxel (p = 0.004 compared to control). There was no statistical difference between the 

APA treatment and docetaxel treatment (p = 0.35). Mice treated with both the APA and 

docetaxel had an additional 62% reduction in aggregate tumor weight compared to that 

achieved by docetaxel alone (p = 0.04).

B. In vivo, SKOV3-ip1-bearing nude mice were treated with control IgG, APA, and 

docetaxel, and/or platelet transfusion. Platelet depletion with APA resulted in a 43% 

decrease in mean aggregate tumor weight of borderline significance (p = 0.07). Docetaxel 

resulted in a similar reduction in mean aggregate tumor weight (69%, p = 0.006). Mice 

given platelet transfusions had a 2.4-fold increase in mean aggregate tumor weight 

compared to control (p = 0.01). Compared to mice treated with docetaxel, mice treated with 

docetaxel and platelet transfusion had a 4-fold increase in mean aggregate tumor weight (p = 

0.004). Mice given platelet transfusions and treated with docetaxel had a similar mean 

aggregate tumor weight to that of untreated controls (p = 0.55). Compared to mice treated 

with docetaxel, mice treated with APA and docetaxel had a 51% decrease in mean tumor 

weight (p = 0.02).

C. In vivo, SKOV3-ip1-bearming nude mice were treated with control IgG, platelet 

transfusion, or platelet transfusion with APA. Platelet transfusion resulted in a 70% increase 

in mean aggregate tumor weight (p = 0.001) whereas the combination of platelet transfusion 

with APA resulted in a non-significant 40% decrease in mean aggregate tumor weight 

compared to control (p = 0.06).
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