19 research outputs found

    Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons.

    Get PDF
    Kallmann's syndrome is caused by the failure of olfactory axons and gonadotropin-releasing hormone (GnRH) neurons to enter the embryonic forebrain, resulting in anosmia and sterility. Sox10 mutations have been associated with Kallmann's syndrome phenotypes, but their effect on olfactory system development is unknown. We recently showed that Sox10 is expressed by neural crest-derived olfactory ensheathing cells (OECs). Here, we demonstrate that in homozygous Sox10(lacZ/lacZ) mouse embryos, OEC differentiation is disrupted; olfactory axons accumulate in the ventromedial olfactory nerve layer and fewer olfactory receptor neurons express the maturation marker OMP (most likely owing to the failure of axonal targeting). Furthermore, GnRH neurons clump together in the periphery and a smaller proportion enters the forebrain. Our data suggest that human Sox10 mutations cause Kallmann's syndrome by disrupting the differentiation of OECs, which promote embryonic olfactory axon targeting and hence olfactory receptor neuron maturation, and GnRH neuron migration to the forebrain.This work was supported by the Wellcome Trust [grant 091555 to C.V.H.B. and P.B.], a Griffith University Encouragement Research grant to J.A.S., and Deutsche Forschungsgemeinschaft [grant We1326/9 to M.W.].This is the final version of the article. It was first available from The Company of Biologists via http://dx.doi.org/10.1242/bio.2013524

    SoxD Proteins Influence Multiple Stages of Oligodendrocyte Development and Modulate SoxE Protein Function

    Get PDF
    SummaryThe myelin-forming oligodendrocytes are an excellent model to study transcriptional regulation of specification events, lineage progression, and terminal differentiation in the central nervous system. Here, we show that the group D Sox transcription factors Sox5 and Sox6 jointly and cell-autonomously regulate several stages of oligodendrocyte development in the mouse spinal cord. They repress specification and terminal differentiation and influence migration patterns. As a consequence, oligodendrocyte precursors and terminally differentiating oligodendrocytes appear precociously in spinal cords deficient for both Sox proteins. Sox5 and Sox6 have opposite functions than the group E Sox proteins Sox9 and Sox10, which promote oligodendrocyte specification and terminal differentiation. Both genetic as well as molecular evidence suggests that Sox5 and Sox6 directly interfere with the function of group E Sox proteins. Our studies reveal a complex regulatory network between different groups of Sox proteins that is essential for proper progression of oligodendrocyte development

    The Sox9 transcription factor determines glial fate choice in the developing spinal cord

    No full text
    The mechanism that causes neural stem cells in the central nervous system to switch from neurogenesis to gliogenesis is poorly understood. Here we analyzed spinal cord development of mice in which the transcription factor Sox9 was specifically ablated from neural stem cells by the CRE/loxP recombination system. These mice exhibit defects in the specification of oligodendrocytes and astrocytes, the two main types of glial cells in the central nervous system. Accompanying an early dramatic reduction in progenitors of the myelin-forming oligodendrocytes, there was a transient increase in motoneurons. Oligodendrocyte progenitor numbers recovered at later stages of development, probably owing to compensatory actions of the related Sox10 and Sox8, both of which overlap with Sox9 in the oligodendrocyte lineage. In agreement, compound loss of Sox9 and Sox10 led to a further decrease in oligodendrocyte progenitors. Astrocyte numbers were also severely reduced in the absence of Sox9 and did not recover at later stages of spinal cord development. Taking the common origin of motoneurons and oligodendrocytes as well as V2 interneurons and some astrocytes into account, stem cells apparently fail to switch from neurogenesis to gliogenesis in at least two domains of the ventricular zone, indicating that Sox9 is a major molecular component of the neuron–glia switch in the developing spinal cord

    Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10

    No full text
    Sox10 is a high-mobility-group transcriptional regulator in early neural crest. Without Sox10, no glia develop throughout the peripheral nervous system. Here we show that Sox10 is restricted in the central nervous system to myelin-forming oligodendroglia. In Sox10-deficient mice progenitors develop, but terminal differentiation is disrupted. No myelin was generated upon transplantation of Sox10-deficient neural stem cells into wild-type hosts showing the permanent, cell-autonomous nature of the defect. Sox10 directly regulates myelin gene expression in oligodendrocytes, but does not control erbB3 expression as in peripheral glia. Sox10 thus functions in peripheral and central glia at different stages and through different mechanisms

    Disruption of ST5 is associated with mental retardation and multiple congenital anomalies

    No full text
    Background The authors observed a patient with a cryptic subtelomeric de novo balanced translocation 46,XY.ish t(11;20)(p15.4;q13.2) presenting with severe mental retardation, muscular hypotonia, seizures, bilateral sensorineural hearing loss, submucous cleft palate, persistent ductus Botalli, unilateral cystic kidney dysplasia and frequent infections. Methods and Results Fluorescence in situ hybridisation mapping and sequencing of the translocation breakpoints showed that no known genes are disrupted at 20q13.2 and that ST5 (suppression of tumorigenicity 5; MIM 140750) is disrupted on 11p15.4. By quantitative PCR from different human tissues, the authors found ST5 to be relatively evenly expressed in fetal tissues. ST5 expression was more pronounced in adult brain, kidney and muscle than in the corresponding fetal tissues, whereas expression in other tissues was generally lower than in the fetal tissue. Using RNA in situ hybridisation in mouse, the authors found that St5 is expressed in the frontal cortex during embryonic development. In adult mouse brain, expression of St5 was especially high in the hippocampal area and cerebellum. Conclusion Hence, the authors suppose that ST5 plays an important role in central nervous system development probably due to disturbance of DENN-domain-mediated vesicle formation and neurotransmitter trafficking. Thus, these findings implicate ST5 in the aetiology of mental retardation, seizures and multiple congenital anomalies

    Erythropoietin production by PDGFR-β+ cells

    Full text link
    PDGFR-β-expressing cells of the kidneys are considered as a relevant site of erythropoietin (EPO) production. The origin of these cells, their contribution to renal EPO production, and if PDGFR-β-positive cells in other organs are also capable to express EPO are less clear. We addressed these questions in mice, in which hypoxia-inducible transcription factors were stabilized in PDGFR-β(+) cells by inducible deletion of the von Hippel-Lindau (Vhl) protein. Vhl deletion led to a 600-fold increase of plasma EPO concentration, 170-fold increase of renal EPO messenger RNA (mRNA) levels, and an increase of hematocrit values up to 70 %. Intrarenal localization of EPO-expressing cells coincided with the zonal heterogeneity and distribution of cells expressing PDGFR-β. Amongst a variety of extrarenal organs only adrenal glands showed significant EPO mRNA expression after Vhl deletion in PDGFR-β(+) cells. EPO mRNA, plasma EPO, and hematocrit fell to subnormal values if HIF-2α, but not HIF-1α, was deleted either alone or in combination with Vhl in PDGFR-β(+) cells. Treatment of mice with a prolyl-hydroxylase inhibitor caused an increase of EPO mRNA abundance and plasma EPO concentrations in wild-type mice and in mice lacking HIF-1α in PDGFR-β(+) cells but exerted no effect in mice lacking HIF-2α in PDGFR-β(+) cells. These findings suggest that PDGFR-β(+) cells are the only relevant site of EPO expression in the kidney and that HIF-2 is the essential transcription factor triggering EPO expression therein. Moreover, our findings suggest that PDGFR-β(+) cells elaborating EPO might arise from the metanephric mesenchyme, rather than from the neural crest
    corecore