1,665 research outputs found

    Spin-state transition and spin-polaron physics in cobalt oxide perovskites: ab initio approach based on quantum chemical methods

    Full text link
    A fully ab initio scheme based on quantum chemical wavefunction methods is used to investigate the correlated multiorbital electronic structure of a 3d-metal compound, LaCoO3. The strong short-range electron correlations, involving both Co and O orbitals, are treated by multireference techniques. The use of effective parameters like the Hubbard U and interorbital U', J terms and the problems associated with their explicit calculation are avoided with this approach. We provide new insight into the spin-state transition at about 90 K and the nature of charge carriers in the doped material. Our results indicate the formation of a t4e2 high-spin state in LaCoO3 for T>90 K. Additionally, we explain the paramagnetic phase in the low-temperature lightly doped compound through the formation of Zhang-Rice-like O hole states and ferromagnetic clusters

    Fast iterative solution of reaction-diffusion control problems arising from chemical processes

    Get PDF
    PDE-constrained optimization problems, and the development of preconditioned iterative methods for the efficient solution of the arising matrix system, is a field of numerical analysis that has recently been attracting much attention. In this paper, we analyze and develop preconditioners for matrix systems that arise from the optimal control of reaction-diffusion equations, which themselves result from chemical processes. Important aspects in our solvers are saddle point theory, mass matrix representation and effective Schur complement approximation, as well as the outer (Newton) iteration to take account of the nonlinearity of the underlying PDEs

    Ab initio wavefunction based methods for excited states in solids: correlation corrections to the band structure of ionic oxides

    Full text link
    Ab initio wavefunction based methods are applied to the study of electron correlation effects on the band structure of oxide systems. We choose MgO as a prototype closed-shell ionic oxide. Our analysis is based on a local Hamiltonian approach and performed on finite fragments cut from the infinite solid. Localized Wannier functions and embedding potentials are obtained from prior periodic Hartree-Fock (HF) calculations. We investigate the role of various electron correlation effects in reducing the HF band gap and modifying the band widths. On-site and nearest-neighbor charge relaxation as well as long-range polarization effects are calculated. Whereas correlation effects are essential for computing accurate band gaps, we found that they produce smaller changes on the HF band widths, at least for this material. Surprisingly, a broadening effect is obtained for the O 2p valence bands. The ab initio data are in good agreement with the energy gap and band width derived from thermoreflectance and x-ray photoemission experiments. The results show that the wavefunction based approach applied here allows for well controlled approximations and a transparent identification of the microscopic processes which determine the electronic band structure

    Regularization-robust preconditioners for time-dependent PDE constrained optimization problems

    Get PDF
    In this article, we motivate, derive and test �effective preconditioners to be used with the Minres algorithm for solving a number of saddle point systems, which arise in PDE constrained optimization problems. We consider the distributed control problem involving the heat equation with two diff�erent functionals, and the Neumann boundary control problem involving Poisson's equation and the heat equation. Crucial to the eff�ectiveness of our preconditioners in each case is an eff�ective approximation of the Schur complement of the matrix system. In each case, we state the problem being solved, propose the preconditioning approach, prove relevant eigenvalue bounds, and provide numerical results which demonstrate that our solvers are eff�ective for a wide range of regularization parameter values, as well as mesh sizes and time-steps

    Heavy ion induced mutations in mammalian cells: Cross sections and molecular analysis

    Get PDF
    Our investigations of heavy ion-induced mutations in mammalian cells, which had been begun a few years ago, were systematically continued. For the first time, it was possible to cover a large LET range with a few kinds of ions. To do this, both UNILAC and SIS were used to yield comparable data for a large energy range. This is a necessary condition for a comprehensive description of the influence of such ion parameters as energy and LET. In these experiments, the induced resistance against the poison 6-thioguanin (6-TG), which is linked to the HPRT locus on the genome, is being used as mutation system. In addition to the mutation-induction cross-section measurements, the molecular changes of the DNA are being investigated by means of Multiplex PCR ('Polymerase Chain Reaction') gene amplification. From these experiments we expect further elucidation of the mutation-inducing mechanisms composing the biological action of heavy-ion radiation

    In-situ high spatial resolution LA-MC-ICPMS 230Th/U dating enables detection of small-scale age inversions in speleothems

    No full text
    We present an in-situ method for Th and U isotope measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) to determine possible age inversions of stalagmites, using a 213 nm Nd:YAG laser connected to an MC-ICPMS. Due to the low ion beam intensity of 230Th (20–120 counts per second, cps), we carefully optimized the operating parameters to get highest possible ion beam intensities, i.e., laser fluence (25 J cm−2), spot size (110 μm), pulse repetition rate (20 Hz), scan speed (4 μm s−1), integration time (1000 s), and He and Ar gas flow (∼0.9 L min−1 and ∼0.6 L min−1 respectively). A precision (2 relative standard error, 2RSE) of better than 1.8% was obtained for a single 230Th/238U measurement performed on a stalagmite from Hϋttenblӓserschachthöhle, western Germany, having U concentrations of 2–7 μg g−1 and with 230Th beam intensity of less than 100 cps. Compared to previous studies (Hoffmann et al., 2009), this is the about same precision, however at lower U concentrations. The data are corrected and calibrated by two factors (F1 and F2) for 230Th/238U and 234U/238U, respectively, using a carbonate material (flowstone in secular equilibrium). We obtained an age uncertainty (2 SE, 2σ) of ca. 9 ka at ca. 215 ka. Most data agree with solution MC-ICPMS results obtained on the same sample within their uncertainties. The reproducibility of the LA-MC-ICPMS age data is within 4.5% (2RSE) as determined from 3 to 4 repeated analyses. With a spot size of 110 μm and spatial resolution of about 400 μm or higher, it is possible to see much more details in thin growing layers than conventional solution analysis, where mixed layer sampling cannot be avoided. Potential age inversions in small regions are revealed, which cannot be detected by solution analysis due to the insufficient spatial resolution

    Electron correlations for ground state properties of group IV semiconductors

    Full text link
    Valence energies for crystalline C, Si, Ge, and Sn with diamond structure have been determined using an ab-initio approach based on information from cluster calculations. Correlation contributions, in particular, have been evaluated in the coupled electron pair approximation (CEPA), by means of increments obtained for localized bond orbitals and for pairs and triples of such bonds. Combining these results with corresponding Hartree-Fock (HF) data, we recover about 95 % of the experimental cohesive energies. Lattice constants are overestimated at the HF level by about 1.5 %; correlation effects reduce these deviations to values which are within the error bounds of this method. A similar behavior is found for the bulk modulus: the HF values which are significantly too high are reduced by correlation effects to about 97 % of the experimental values.Comment: 22 pages, latex, 2 figure

    Positronium chemistry studied by AMOC measurements using a relativistic positron beam

    No full text
    Beam-based Age-Momentum Correlation (β+γΔE AMOC) measurements using an MeV positron beam have become a powerful tool to study chemical reactions of positronium by time-domain observations of the different positron states tagged by the Doppler-broadening (ΔE) characteristics of the 511 keV annihilation radiation. As an example, the investigation of the spin-conversion reaction in the system HTEMPO/methanol is reported. The experimental data for small HTEMPO concentrations can be fitted quite well to a rate-equation model containing the conversion rate as the only adjustable parameter. This model can presumably be applied not only to spin conversion but also to other chemical reactions and to inhibition of positronium. Possible effects of oxidation, complex formation, and inhibition are discussed by way of examples

    Observation of a New Type of Low Frequency Waves at Comet 67P/Churyumov-Gerasimenko

    Get PDF
    We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low activity state. Quasi-coherent, large-amplitude (δB/B∼1\delta B/B \sim 1), compressional magnetic field oscillations at ∼\sim 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied comet-interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pick-up ion driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.Comment: 6 pages, 3 Figure
    • …
    corecore